a2 United States Patent

Olcott

US009171207B1

US 9,171,207 B1
Oct. 27, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

")

@

(22)

(60)

(1)

(52)

(58)

METHOD AND SYSTEM FOR RECOGNIZING
MACHINE GENERATED CHARACTER
GLYPHS IN GRAPHIC IMAGES

Applicant: Peter L Olcott, Papillion, NE (US)

Inventor: Peter L Olcott, Papillion, NE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 7 days.

Appl. No.: 14/204,321

Filed: Mar. 11,2014

Related U.S. Application Data

Provisional application No. 61/800,725, filed on Mar.
15, 2013.

Int. Cl1.

GO6K 9/00 (2006.01)

GO6K 9/46 (2006.01)

U.S. CL

CPC ... GO6K 9/00503 (2013.01); GO6K 9/00442

(2013.01); GO6K 9/4642 (2013.01); GO6K
2209/01 (2013.01)
Field of Classification Search

CPC ... GO6K 7/143; GO6K 2209/01; GO6K 9/344;
GO6K 9/00456; GO6K 9/4642; GO6K 9/4647;
GO6K 9/4652; GO6K 9/38; GO6K 9/00442;
GO6K 9/6292
USPC 382/194, 176, 206

See application file for complete search history.

Start of a proca:
recognize character giyphs

in a grapbic image

(56) References Cited
U.S. PATENT DOCUMENTS
5,488,719 A * 1/1996 Kaplan GO6K 9/6807
382/182
5,606,690 A * 2/1997 Hunteretal. 715/255
5,644,656 A * 7/1997 Akraetal. 382/215
5,862,251 A * 1/1999 Al-Karmi et al. 382/186
5,978,801 A * 11/1999 Yuasa
5,995,963 A * 11/1999 Nanba et al.
6,370,269 B1* 4/2002 Al-Karmietal. 382/197
7,046,848 B1* 5/2006 Olcott 382/176
7,444,021 B2* 10/2008 Napper 382/186
2003/0187633 Al* 10/2003 Fairweather 704/9
2009/0060335 Al* 3/2009 Rodriguez
Serrano GO6K 9/00194
382/177
2010/0150448 Al* 6/2010 Lecerf GOGF 17/3061
382/190
2010/0266215 Al* 10/2010 Huaetal.ccccoevnnee 382/229

* cited by examiner
Primary Examiner — John Villecco

(57) ABSTRACT

A method and system for recognizing machine generated
character glyphs in a graphic image that uses a deterministic
finite automaton (DFA) to separately recognize the individual
pixelcolumns of character glyphs and then combines these
separate pixelcolumns together to form correctly recognized
whole glyphs. This method and system can enable data to be
automatically exchanged between applications where no
alternative method of data interchange exists. The DFA mini-
mizes its space requirements by storing the current input
dimension of its state transition table as a sorted list of pos-
sible values that could be matched at the current state. This
sorted list can then be binary searched for the current input
pixel RGB valve.

20 Claims, 57 Drawing Sheets

sS 0

Proceed through input
top leftmost pixef to

righimost pixel

b
mage from
hottom

i

Process each image pixel
using the OFA recognizer

ognized glyph 7

Store recy
pixelcolumns

745

Combine together
pizelcolumns into
whole

recog
COTec!

Ay maiched
giyphs

mized glyph

End of a process to
recognize character glyphs
in @ graphic image

~.

U.S. Patent Oct. 27, 2015 Sheet 1 of 57
Pizxel Pixel Pixel Pixel
Column Row {0} Row {1} Row {2}
{A) 11111311 3333333 5555855 /
{B) 111311311 3333333 6666666
{C) 11113311 4444444 TIITTN?
{D} 2222222 4444444 8838888
{E) 2222222 4444444 999899389

FIG. 1A

/10

RGB Next

value State offset
....... 0001 001
11313111 0003 001
2222222 Q005 000
3333333 0006 001
4444444 0008 000
4444444 0009 001
5555555

6666666

7777777

8888888

9999999

DFA Action

ginary Search
Binary Search
Binary Search
ginary Search
Binary Search
Binary Search
Recognize(a)
Recognize(B)
rRecogrize(C)
Recognize(D)
rRecognize(E)

F

IG. 1C

US 9,171,207 B1

U.S. Patent Oct. 27, 2015 Sheet 2 of 57 US 9,171,207 B1

0
Start of a process to construct a
DFA {or recognizing pixelcolumns
of machine generated characier
glyphs in a graphic image

k4

Caollect pixeicolumns of all character /100

glyphs in a Fontinstance
including every permutation of A
overlapping pixelcolumn.

50

¥

Sort the collected
pixelcolumns by their
pixel RGB values

Merge identical prefixes p /

of the character glyph
pixelcolumns together

~

60

y

70
Generate DFA state transition table from the /
merged prefixes such that the number of
elements generated is substantially less than
the number of DFA siates mulliplied by the
number of possible pixel RGB values

A4

End of a process to consiruct a

DFA for recognizing pixelcolumns

of machine generaled character
glyphs in a graphic image

FIG. 2

US 9,171,207 B1

Sheet 3 of 57

Oct. 27, 2015

U.S. Patent

¢ Ol

dddddd 34443 J4HP0O8

344434
Fdddd4
33444
344444
444444
334444
434444
433444

43¥P08
420000

qZ0000
sseedd
4J€egS
00ssee
343433
33¥P08
9z9208
¥piddd

0

(1°xid 1sowdol st 00)

J3eess jjljee
00ssee $S0000
434428 000000
SS0000 9Z08+P
SeeeLd 114P08
4+4¥P08 GeqC08
qeqz08 vpiddd

$343vP 33¥P08
zRRRHP 08PEYS
d3d4dd dddddd
33333 333333

90 S0

F3dddd ddddd
334343 344444
334344 349P08
43¥P08 9¢49¢08
9¢4¢08 P44
vP4343 JI¥PO8
342BS8S Q7004¢
000000 08¥P4J
000000 +P0O8AZ
sseel) qzosyp
434443 3ddddd
dddddd d4433d
$4¥P08 Jiijee
920000 08S5SS
000058S 920000
eRlils 4Z08YP
433443 Jddddd
3334%€ J4dddd
SS0000 JiEeSS
000000 SSER)J)
000000 Jieess
000000 S5eBld
qzo8vP J4ddid
333333 3dd4dd
334344 J4¥P08
®EBOB08 9¢9C08
Y334 ¥PIddd
$3¥P08 ®ESS00
ogeejd sqeely
433444 4dJjee
YP0O8GZ $5009¢
SSEedl 08VPId
334343 344444
443444 344443

¥0 €0

dddddd
34¥P08
q2qz08
R334
444443
43BeLS
ogssee
43jjee
S50000
sseeld
333343
BESGSS
eeypeR
BRYPYHp
0849200
4208¥p

344343
BESS00
009208
¥PYpPO8
420000
SSERSJ)
JJBBSS
00009
08¥P3J
334443
443444

0

3JBeSS
009208
¥P3d4d
434444
334444
44008
920000
000000
qzo8vP
34443
3433 ¥P
089200
000000
000000

TO

eeRRRR
34443
334344
333443
334443

00

CO0O0OOOLOOLOOOCOCOOOOTOLOLOOOOOCOOCD

apod

SIN|BA 99Y [@XLd UWN[OD|3XLd dejJaA0

HUEBHERAOBIAVIOARIRITIAR NN MER

COOOVLOLOOOOOCOOCOOUOCLOOOOOOOOOOO0
CrinMmMITOr MO MNMITNIOrNMNMTNOO™NMILNONDOO
~
-

SIULOGOPOD XOpUI uWN[OD MOY
ydKio> ydAd

m“EuEu_.._looooooV m
Bleg uwnjodoxLd ydAo

8--IgD)uewoy MIN SSWLL
urddeuaAQuoN o dwex3

US 9,171,207 B1

¥ "Old

Sheet 4 of 57

Oct. 27, 2015

3ddd3d4 I3dddd JIBRSS GS00SS GZO8YP ¥PIdId Jddddd JddJee JJERSS JJERSS jddddd 4 /i 1 T
344434 333444 HABRGS SS00SS 4708YP P4 44444 JJJJBR JJPRLS JJPRSS 4ddidd I /1 0 14
444444 J33343 00SSSS ©eiiid J1I3bP J4PPO8 PPOBAZ SS00GZ 00004Z 004208 Jiiiid [4 /i 1 0
444434 334444 00S8SS ®edddd JdddiP J4vPO8 vPO8AZ SS009¢ 00009Z 009208 JJ444dd 1 /i 0 £
44444 344444 0000SS J44ddd 444443 34444 344443 J444BR JIPRCS LSRRGS dddddd [4 i 1 T
333433 J43444 0000SS ddddd F3dddd dddddd Jddddd J3JJBR JJERSS JJPRSS Jdiddd 1 i 0 4
434434 Jd44d4 eeddee jididd JAddeP J4vPO8 PPOBAZ $S009C 00009C 009208 Jddidd [4 i T 0
343444 344444 BRIJPR J4dddd J444PP J4¥PO8 PPOBAC $S009Z 00009Z 004Z08 13433 T 1 0 €
33444 d444d4 3434443 dddddd 006GBR Jidddd dddddd J34JBe JiERCS LRSS Jiiddd [4 ~i T 0
344434 Jdd4dd 33444 J3dddd 009S®R Jidddd dddddd JddjeR jleess jjeeqs jliddd 1 7 0 14
J44444 SS000Z Pedddd 00SSPR Jidddd Jddd4dd dddddd JA4PR JJPRCG LIPPSS 4li)d [4 W 1 T
334434 §5004¢ BRI 00SS®R Jddddd J3d4dd J4iddd JIJ4Be Jieegs JJeess Jiiijgd T L 0 4
444444 08¥P4d JJ34€° Jdiddd J3336P J4PPO8 #PO8YZ SS00GZ 00009Z 009208 Jiiidd [4 i T 0
34444 08VPI4 J434€8 344334 J3430P HI¥PO8 $POBAC SS0049Z 00009Z 009208 I3 I i 0 €
d3dddd dddddd Jddddd dddddd Jddddd Jddddd q208¥P JIiJBR jieeSS JJRRSS Jiddid [4 +i T 0
343ddd Jddddd 334 Jddddd dd4dddd Jddddd qQuOBYP Jdijee JJRRLS JIERSS Jidddd I *i 0 14
3443188 4Z006S SS®RY) BRLlY Jdiddd Jddddd dd4d4d4d JddJee JJeecs JJeeSS il 4 Ci 1 l
43448% GZ00SS SSTRdd Pelidd Jidddd Hdddd J4dddd Jdjdee jjeecs Jjeess jdidd T (i 0 4
SS006S PRlidd J4J44BT Jidddd J4440P J4vPO8 vPOBAZ SS00GC 00009C 009208 Jd44d4 [4 (i 1 T
SS00SS ®edldd 13ddee Jidddd JdJdvP JJ4P08 vPO8Je $5009Z 00009C 009208 3ddddd T Mm 0 €
€elidd dddddd 650000 Jd444) ©EERYD Q8€eL) SSBRLY 08VPId 08P vPIddd dddddd [4 i 1 0
Belddd Jddddd SS0000 444434 BRERLD O8PRLL SSERly O8¥PI4 08VPJ) vPIJ4d Jddddd I Ci 0 4
344344 334443 ©BIIdd 08PPI 08VPId ©Rddd) Jdiddd Jdddee Jjeess jjeeqq Jiddld 4 by T 0
3444344 343444 eelddd 08vPId 08¥PI4 ®BJII) Jddddd JJJJBR JIPRSS JIPRGS Qgdlid T) 0 14
334444 Jddd44 Belddd qzogvp 08¥PdJ Jidddd Jddddd Jijee jleecs JeeGS jiiijd [4 Ri T 0
434434 Jd44d4d BRILLL QC08vD 08¢yPdd Jd4dddd Jddddd JdJJBR JJeBSS JiPeqq Jidigd T i 0 14
343444 344444 BRI Q0SSTR QZO8YD Jddddd Fddddd J44JBR JJPRGS JJBESS Jddidd [4 $i T 0
d3dddd Jddddd4 BeId 00GSTR qZ08YP Jidddd Jddddd JJJ4JBE J4€ELS JIPRSS Jddddd T $i 0 1 4
33444 Jddddd SGRLd 08VPId qZO8YP ¥YPIddd qCO8YP Jiddee JJeess JIERSS jddddd [4 #i T 0
Jddddd dddddd SSRRYS O8PPIJ q7O8YP YPIIId qG708YP JJiJBe JJERSS JJERSS Qdidd T #1 0 14
344444 444444 009208 343344 Jd4d443 Jddddd Jd444d4 JJdJBR JieRCQ LIPRSG J4didd [4 ii T T
444434 4444 009208 444443 dddddd ddddd3 JFdddd JddJeR JJeess JJeess Jidddd I ii 0 1 4
334444 343444 vPIdER Jadddd 34440P 439PO8 $PO8AC S5004¢C 00009¢ 009208 343444 [4 il 1 0
434444 444434 ¥pddee ddddd Jd4dbP H¥P08 $PO8AC $5009C 00009C 009208 Jidddd T ii 0 €

01 60 80 20 90 S0 0 €0 0 10 00 3p0D SIULOLRPOD XIpPUI uwn|od
(1oxtd 1sowdol St Q) SonfeA 85 [9Xid uUWN[OD|dXLd dejJsA0 ydArs ydAo

U.S. Patent

(4444347000000) (8--IgD)UeWOY MON SauiLl
Bled uwnjodoxikd YdA[o burdde| 9 AQUON o |dwex3

US 9,171,207 B1

Sheet 5 of 57

Oct. 27, 2015

G Ol

Belidd vPIddd vPIIIS vPIIdJ D43 vPI4Ad PPId3d PDIJER PPEEGS pPERSS J4d44dd LT { [4 0
Beiddd ¥PIddd PPI4dd VPII4d ¥PId4d vPI4dd PPIIdd PDJJBR DRSS HPRRSS 4444l 9T L T 0
Belddd vPIddd vPIdIdJ vPIddd ¥PIIIS vPIddd ¥PIJdI YPIIBR $DRRGS (PBRSS Jiiddd ST [0 14
vP33d4 Jd343d 009208 005Ge® SSBRY) SSPRHD (O8vPJd jiJjee Jjeecs jjeees jiljil 1T 1 [4 0
¥P4d4d 444444 004208 005S5BR G5BRld SSeeyp O8¥Pid JdJJ4€R JJeeGS J4eess jididd 0T faj 1 T
vP3ddd $3344d 009208 00§S5BC SSeBLY SSERPD 08VPJd FidJ€® JJPRSS JJeRGS Jijidd 6 [3; 0 v
vPid4d 3434 009208 00SSB® SSEBLL 08vPd) vPIddd JJJjBR® Jjeesg ppeegs Jilil) 1T LLi < 0
¥P3344 443444 009208 00GSe® GGeedd O8¥P4d tvPId4dd Jid4jee J4eeSG ypRRGS J44ddd 0T C1i 1 1
¥P4444 444444 004208 00SSeR SSeRld 08¥Pid VPIddd J444BE LJRBGS pPRRGS Ji4iddd 6 nmm 0 ¥
Be08qZ 0000SS 00GSBe GSBRl) ®Blidd vPIddd SSBEIS JJJ4BR JJBRGS JJPeSS J4dddd TT [fi [4 0
BBO8qZ 0000SS Q0GSEE® SSPRYY BBl vPIddd GSBEYY JJJIBE JJPRGS J4PRSS J4dddd ot £Ei T €
BBOR4Z 0000SS 00§SeE GS®RJ] ®Rljld vPiidd SSERIJ jdijee jJjeeqs JJeess jdiidd 6 Lt 0 14
vP4ddd Jd4ddd4d 000208 QZO8YP 081PJ4 BBJJIJ GZO8YD Ji4JBR JJBESS JJBRCS Jidddd TT i [4 0
vP44dd 443443 009208 qZ08YP 08vPId BRLLLS GZO8YD Ji4JBR LJBRSS JJPERCS Jljild 0T Lij 1 T
¥P3ddd 434444 009208 qc08vP 08¥Pdd ®BJIid qZO8YP jiijee Jjeess jjeess jiijdd 6 Lij 0 14
BE084Z 4Z00SS 009708 qTOBYP SSBRJJ ®EJIJ) GTO8YP JJJJee JJeess JJeess Jiiddd TI L3 4 0
BBOZ9qZ 4Z00SS 004208 GC08PP SSeRyd ®RYLLl Q708%D JJJJEBR JJBERSS JJPeGS Ji4ddd ot £ T 4
BR(O8GZ 4Z00SS 009¢08 9C08¥P SSeedd ®Rllll GZ08VP Jidiee Jjeeqs JJeess jtjddl 6 HAm 0 14
YP4d4dd J43dd43 434434 A4 J4dddd bPI4d) BRYALY BERJIER 0808SS 0808SS Jd4d4dd {1 IN\i [4 0
Yoiddd J4dddd Jddddd dd4ddd Jddddd vPiddd Bejdd) eeljee 0808SS 0808SS Jdiddd 91 i T 0
vP4ddd 444444 444444 dddddd J4d4d4dd vPIASS BRIJL BRIJER OB08SS 08085S dddddd ST L\ 0 14
vPiddd 443444 JJBRSS SS00SS 9Z08VP vPIddd J3d4ddd JdJJ€R JJBeSS JJeeqq jijidd 1T 94 4 0
¥P34d3 34434 JJBESS S§S00SS qZO8YP vPIddd JJdddd Jdd4JeR JLEeSG JJBRGS JldJld 0T /i T T
¥P43d44 43344 J4BRES S500SS q9208VP vPdddd dddd4dd Ji4iee J4PROG J4PRGE Jddddd 6 L7 0 14
¥P3444 434444 0000SS 444444 Jddddd 444444 Jdd4d4dd 34ddee JJRBSS JJBESS Jidddd Tt i 4 0
VP3444 Jdddddd 0000SS Jd3d3d dd4dddd Jddddd Jd4ddd d4djBR JJRRGG JIPRSS Jd4iddd oT £ T T
YP44dd J34d44 0000SS Jd3ddd Hdddd 4444 J3dddd 34diee Jgeeos JPess J4jddd 6 ~“m 0 b4
¥Piddd §5009C BRlidd 00§S®® Jiiddd dddddd Jddddd Jiddee jjeegs jieess jliddd 1T n.m [4 0
¥Piddd §S00GC Belidd 00SSeR Jdiddd J3dddd Fddddd JIJJee jJeess Jj4eesS Jidddd 0T w.m 1 1
vP44dd SS009C ®edild 00SSBR Jdiddd Jidddd 343333 J444BR LjPRQS JJPPeS Jliild 6 Lej 0 14
PP3d3d Hd4dd 344344 34444 dddddd d4dddd 344434 Jdddee Jjeess jjeecs jiijid 0z L. < 0
Y334 d3dddd Jddddd d3dddd Fddddd d4dddd dddddd Jdddee djeess jjeess jiiidd 8T ¥ 0 L4
¥P34dd 134444 0049208 Jd444d Jdd43dd 43443 dddddd JJ4JeR JJPRGS QPGS J44idd 1T L 4 0
¥P3ddd 434434 009208 Jddddd 44434 Jddddd d4dd4d JddJeR JJRRCS JQBeSS Jiiddd 0T L T T
VYP34d4 J34d444 009208 J3d3dd dddddd 3444 F34d4d Jdjee JJeeqs JJeess JJ4iddd 6 f 0 ¥
0T 60 80 40 90 S0 0 €0 0 10 00 39po3 SIULO43pOD XSpul uwnjad
(1oXtd 1sowdol SL Q) SONLBA DY [OXLd UWN[OD|3XLd dR}JDAQ yaA1d ydAto

U.S. Patent

(4444447000000) (8--Ig9D)ueWOY MSN SOWLL
B1Bg uwnjodaxLd ydAy o burdde|Jo | AOuoN o |dwex3

US 9,171,207 B1

Sheet 6 of 57

Oct. 27, 2015

9 "OId

F4d4d4d 434433 dddddd dddddd 434P08 YP0O8AZ BBSS00 $S0000 920000 000000 Jidddd 0 £ 0 S €€
BBldd 444444 44444 J4444d JIPPOR $POBGZ eBSS00 $S0000 920000 000000 443444 [4 AL T 0 43
BBl4dd dddddd dddddd Jddddd J4PPO8 $PO8GC BBSS00 SS0000 9Z0000 000000 J3dddd T Ac 0 S 1€
eelddd J33433 3344334 33343 3IP08 vP0O89C BRSS00 $S0000 920000 000000 Jidiid [4 _C T 0 0¢
eelldd Jd4dddd d4d4dd dddddd P08 YPO8YZ BBSS00 SS0000 9Z0000 000000 443444 T £ 0 S 62
Belddd Jdd4d4d d34444 J44444 JIPOR 1PO8GZ BEBSSOO SS0000 470000 000000 Jdd43d [4 [c T 0 8¢
RIS Jddddd dd4d4dd dddddd J4PPOR PPO8YZ BEBGSQO SSO0000 9Z0000 000000 J3443d T Lc 0 S Lz
BB 34434 J3dd a4 J4eP08 vPO8GZ BRSSO0 GS0000 9420000 000000 J3i44d <l (c T 0 9¢
eedddd ddd4ddd Jd4444 J43d443 JIPPO8 ¥POBAE BESSO0 SS0000 920000 000000 J3didd T (c 0 S S<
08¥P4d Jd34d3 J343444 J434dd IIVPO8 ¥POBYZ BBSSO0 SSO0000 420000 000000 344344 [4 {c T 0 144
08vPd3 J3dddd 3ddddd J43d4d44 J4PPO8 $POBGL BeSSO0 SSO000 920000 000000 Fiiddd T C 0 S £2
SSEeYd 34444 J4d44d4d S 44¥PO8 vP08YC ®eSS00 SS0000 920000 000000 334444 [4 c T 0 144
sseedd idddd Jddd4dd Jd4ddd J3vP08 ¥PO8YZ BRSS00 SS0000 9420000 000000 13ddid T dc 0 S 1<
00§6%e J434d43 434434 J4d4d4d JI4PO8 POBYZ BESSO0 $50000 9Z0000 000000 Fi4d43d Z 4C T 0 0z
00S5%® Jdiddd J344d4 J4d34d J4¥P0O8 PPO8YZ BBSSO0 SSO000 920000 000000 Jidd4d T 4C 0 S 6T
009208 J43443 34444 Jdd34d J49P0O8 $POBYC BBSSO0 $S0000 920000 000000 Jidddd [4 fc I T 8T
009208 FJ4444 J43Hd J3dd44d JI¥P0O8 ¥PO8GZ ©eSSO0 SS0000 920000 000000 Jiddid T ¥y 0 S LT
344344 344444 ¥PO8GZ 0000dZ 0000SS $S0000 +3vP08 Jijiee eeypee (Q0000) eeeeee 0 $ 0 14 9T
®elidd 444444 ¥POSGT 000094Z 0000SS S$S0000 FivP08 J4jJiee eeypee QOQQ0Q eeeeee [4 A T 0 ST
Belddd 44444 $PO8BAC 000049C 000055 SS0000 43vP08 JiiJE® ERYpER (OO00Q EBERERE T A$ 0 14 14
eelidd J33d33 PP0O8AZ 000092 0000SS S50000 Ji¥PO8 3Jjijee eeppee (OQ000 eeeeee 4 3 T 0 €I
eeidld J43d43 ¥PO8GZ 000042 0000SS $S0000 J4+P08 3jidjee eeppee (00000 eeeeee T $ 0 L4 4
eejldd Jd4i3d4d PPOYAZ 00009Z 0000SS SS0000 J3+PO8 Jijjee eeppee (00000 eeeeee 4 [$ T 0 I
eeildd J43443 vPOBAC 000092 0000SS SS0000 J3+P08 Jijjee eEppER (00Q0) eeERREE I L$ 0 14 1]
eelldd J44444 ¥POSAZ 000092 0000SS SS0000 F4+vP08 1ijjEe EERppER (00000 eeeEER [4 Mm T 0 60
eedidd 44444 ¥PORAZ 000092 0000SS $S0000 33+P08 Jiijee BEBypE® (00000 TeeEee 1 $ 0 v 20
08¥P4d Jd3d4d34 +¥PO8AC 000097 0000SS $S0000 F3¥PO8 JJijee eeppee Q00000 eeeeee Z i T 0 £0
08+vPdd Jd4dd4 ¥P08GL 000097 0000SS $S0000 J3+P0O8 Jiijee eeppee Q0Q00) eeeeer T $ 0 14 90
Sseedl Jd4d44d PPOSAZ 000092 0000SS SS0000 44¥P08 Jiijee eeppee (OQQ0Q veeeee [4 $ T 0 S0
sseeld 1idddd $P08AZ 00009¢ 00005§S $50000 34+P08 Jjiiee eeypee (00000 reeeee T dg 0 14 ¥0
00sse® Ji3ddd ¥PO84Z 000047 0000SS $S0000 J4+P08 Jiijee eeppee Q0000 eeeeee [4 4% T 0 £0
00SS®® J43ddd ¥PO8AC 00004 0000SS SS0000 34+P08 Jijjee BEppER (00000 EEREREE T $ 0 4 <0
009208 J43443 ¥POBAC 000092 00005S SS0000 34+P08 Jijjee eeypER (00000 erEEER [4 LS T T 10
009208 J34444 ¥PORGZ 00009z 0000SS SS0000 33+P08 Ji4j¥e ®ELPEE® (00000 erEEER 1 8 0 ¥ 00

ot 60 80 L0 20 S0 ¥0 £0 0 10 00 Spo> S1UL048po> XBpul uwnjod moy

(1®Xid 3sowdol Si Q) SON[BA 89 [9Xld UWN[OD[SXLd de[J3A0 ydA1o ydAis

U.S. Patent

(4444447000000) (8--IgD)uewoy MoN SauwLi
(SanjeA 994 |9XLd Aq pol1JoS) BIeg uwn|od|aXitd ydA|o a|dwex3

U.S. Patent Oct. 27, 2015 Sheet 7 of 57 US 9,171,207 B1

100

Start of a process to collect
pixelcolumns of all character
glyphs in a font instance
including every permutation of
overlapping pixelcolumn

: 200

Collect non overlapping
glyph pixelcolumns

4 300
/

Collect double overlapping
glyph pixelcolumns

400

e

Collect triple overlapping /|
pixelcolumns

\4

End of a process io collect
pixelcolumns of all character
glyphs in a font instance
including every combination of
overlapping pixelcolumn

FIG. 7

U.S. Patent Oct. 27, 2015 Sheet 8 of 57 US 9,171,207 B1

200

Start of a process to collect non
overlapping glyph pixelcolumns

¥ /2 10
Generate all individual P
non-overlapping glyphs
Y /220
Determine dimensions and A

placement of glyphs

230
Collect non-overlapped //
glyoh pixelcolum data

End of a process o collact non
overlapping glyph pixelcolumns

FIG. 8

U.S. Patent

Oct. 27,2015 Sheet 9 of 57 US 9,171,207 B1

\\\struct DFA_Node {

typedef unsigned char uint8;
typedef unsigned short uintl6;
typedef unsigned int uint32;

union {
struct { // State Transition Node
uint32 pPixel; // Pixel RGB value
uint32 Next; // Next DFA State
uintle offset; // offset from Next DFA State

) uint8 ActionCode; // _BSEARCH or _RECOGNIZE
struct { // Identifier Node
uint32 CodePoints[3]; // Three UTF-32 CodePoints
uint8 GlyphiIndex; // Index into CodePoint[3]
uint8 GlyphcColumn; // Glyph Pixel Column Number
uint8 oOverlapcCode; // zero to twenty-six

I H

NN
SN

™~

™~

Structures related to SelectedNodesList

1/

// One PixelColumn of DFA Identifier Nodes
// (see DFA_Node 600 above) and Image
// Coordinates of Matched PixelColumn

//
struct SelectedNodes {
uint32 ImageRow; // vertical Coordinate
uint32 ImageColumn; // Horizontal Coordinate
y std: :vector<uint32> NodeList; // DFA Node Index

class selectedNodesList { // List of DFA Node Indices
private: //_that were recognized
std::vector<SelectedNodes> SelectedList;

FIG. 9

U.S. Patent Oct. 27, 2015 Sheet 10 of 57 US 9,171,207 B1

300
Start of a process to collect
double overlapping glyph
pixeicolumns

! 810

e

Generate all glyph pairs

! /320

Datermine Minimal Py
BoundingBox Rectangie of
Glyph Pair

—

e

330

Collect PixeisBetwean([][] values

t 340
/

Collect double overlapping
pixelcolumn data

350
¥ /

A

Determine Double OverlapCode

End of a process to collect
double overlapping glyph
pixelcolumns

FIG. 10

U.S. Patent Oct. 27, 2015 Sheet 11 of 57 US 9,171,207 B1

515

™

wl

#

Lﬂl

™

t'c-’ll

\i:il

Mo«l m!w-!l ".'bwt-?-l

515

FIG. 11

US 9,171,207 B1

Sheet 12 of 57

Oct. 27, 2015

U.S. Patent

¢l "Old

{edd *zdD ‘1dD} Jo delasap |eiided 4L // IXapuIydA|D + 6 uJanadd
95|19
{
TdD sde|JoA0 AL|B10L ZdD 44, // x9purydA|d + TZ udniad
as|?

TdD sde|J4oA0 ALLBI0L Uyl D40W ZdD 44, // x9purydA|d + $zZ udnisd
(0 > [Tdd]yapLm|axidydA|D + [7dD][TdD]usamiags|axid) 4L
} (0 = [Tdd]uapLmaxidydA[D + [zdD][TdD]udemidgs|oxid) JL dS[d

ZdD sde|JdaA0 AL|lB1oL TdD 474 // IxopurydAD + 7T udniad
(0 => [Zdd]uapim|axidydA|D + [zdD] [TdD]udemiags|dxid) 4L as|?
{
Z2dD sde|J9A0 ALLRIOL £d4D 4,4 // {X9puIydA|D + ST uuaniad
as|®

2dD sde|JaA0 AL|B10L ueYl BJOW €4 4.4 // xopurydA|D + 8T u4niou
(0 > [zadlyapimiexidydA|D + [£dd][zdD]uoamiags|axtid) JL

} (0 = [zddlyapimiexLdydA|D + [£dD][zdD]uoamiags|axLd) 41

ZdD sde|Jon0 A||eLlJed Tdd 44 // HXEpUIYdAD + T udniad
as|e
24D sde|usno AL Le30L TdD 3 // XopuIydAD + ¢ uaniadu
(0 => [ZdD]yapim|axLdydA|D + [ZdD] [TdD]ussmiags|axLd) JL 9s|d
{
TdD sde|JaAQ AL @30l ZdD 4, // IXOpUuIydA® + ¢ uJnlad
as|@

TdD sde|JoA0 AL €101 ueyl BJOW zZdd 4, // fxapurydA|d + 7 udniad
(0 > [TdDIYApLMIAXLdydALD + [zdD][TdD]usemisas|axid) 4t

} (0 = [TdDIYIPLMLOXLAYdALD + [7dD][TdD]usomions|axid) 4t)
(EpUIYdALD ZEIULR ‘£dD ZEIULN ‘ZdD ZEIULN ‘TdD ZEIuLn)apodde|JaA0IaD Iul

U.S. Patent Oct. 27, 2015 Sheet 13 of 57 US 9,171,207 B1

400

Start of a process io collect
friple overlapping glyph
pixelcolumns

| /410

Generate all triple d
overlapping glyph triads

L4 /420

Determine minimal BoundingBox
rectangle of glyph triad

4 430

Collact triple overlapping ./
pixelcolumn data

440
4 /

e
Determine Triple QOverlapCode

End of a process o collect
triple overlapping glyph
pixelcolumns

FIG. 13

U.S. Patent Oct. 27, 2015 Sheet 14 of 57 US 9,171,207 B1

24
-
¥

i
1
H

b

520

U.S. Patent Oct. 27, 2015 Sheet 15 of 57 US 9,171,207 B1

535 530

FIG. 15

U.S. Patent Oct. 27, 2015 Sheet 16 of 57 US 9,171,207 B1
[000000]1 Pixel(000000) Next(000001) OFffset(000001) _BSEARCH 540
[000001] Pixel(aaaaaa) Next(058316) OFfset(000000) _BSEARCH
[000002] Pixel (FFFfFf) Next(000003) Offset(000067) _BSEARCH
[000003] Pixel(000000) Next(052301) OFfset(000040) _BSEARCH
[000004] Pixel(00002b) Next(050302) Offset(000018) _BSEARCH 545
[000005] Pixel(000055) Next(048804) OFffset(000008) _BSEARCH
[000006] Pixel(002b2b) Next(048744) Offset(000002) _BSEARCH
[000007] Pixel(002b80) Next(048032) OFffset(000007) _BSEARCH
[000008] Pixel(005555) Next(047993) OFffset(000002) _BSEARCH
(0000091 pixe](005580) Next(047777) Offset(000005) _BSEARCH g B55()
[000010] Pixel(0055aa) Next(045532) OFffset(000004) _BSEARCH
[000011] Pixel(2b0000) Next(045173) OFffset(000006) _BSEARCH
[000012] Pixel(2b2b00) Next(044980) OFfset(000003) _BSEARCH
[000013] Pixel(2b2b2b) Next(044768) OFffset(000006) _BSEARCH
[000014] Pixel(2b2b55) Next(044748) Offset(000000) _BSEARCH
[000015] Pixel(2b5555) Next(044586) Offset(000007) _BSEARCH
[000016] Pixel(2b5580) Next(044521) Offset(000000) _BSEARCH
[000017] Pixel(2b8080) Next(044323) Offset(000008) _BSEARCH
000018] Pixel(2b80aa) Next(043971) OFfset(000013) _BSEARCH
000019] Pixel(2b80d4) Next(040106) OFfset(000020) _BSEARCH
000020] Pixel (550000) Next(039687) OFfset(000007) _BSEARCH
000021] Pixel(55002b) Next(039533) OFfset(000000) _BSEARCH
000022] Pixel (552b00) Next(039465) Offset(000002) _BSEARCH
000023] Pixel(552b2b) Next(039454) Offset(000000) _BSEARCH
000024] Pixel(552b55) Next(039402) OFffset(000001) _BSEARCH
0000257 Pixel(552b80) Next(038867) OFffset(000001) _BSEARCH
000026] Pixel(555500) Next(038768) Offset(000002) _BSEARCH
000027] Pixel(55552b) Next(038714) Offset(000002) _BSEARCH
000028] Pixel(555555) Next(038535) OFffset(000003) _BSEARCH
000029] Pixel(555580) Next(038496) OFffset(000000) _BSEARCH
0000307 Pixel(5555aa) Next(038331) OFffset(000000) _BSEARCH
000031] Pixel(558080) Next(038159) OFfset(000005) _BSEARCH
000032] Pixel(5580aa) Next(038107) OFffset(000001) _BSEARCH
000033] Pixel(5580d4) Next(037560) OFfset(000001) _BSEARCH
000034] Pixel(55aaaa) Next(037375) OFffset(000004) _BSEARCH
000035] Pixel(55aad4) Next(037050) OFffset(000008) _BSEARCH
000036] Pixel(55aaff) Next(033429) OFffset(000012) _BSEARCH
000037] Pixel(802b00) Next(032863) OFffset(000009) _BSEARCH
000038] Pixel(805500) Next(032787) Offset(000002) _BSEARCH
000039] Pixel(805555) Next(032772) OFffset(000000) _BSEARCH
000040] Pixel (805580) Next(032742) OFfset(000000) _BSEARCH
0000417 Pixel(80802b) Next(032688) OFfset(000002) _BSEARCH
000042] Pixel(808055) Next(032579) Offset(000001) _BSEARCH
000043] Pixel(808080) Next(032564) OFffset(000000) _BSEARCH
000044] Pixel(80aa80) Next(032109) OFffset(000005) _BSEARCH
000045] Pixel(80aaaa) Next(032098) OFfset(000000) _BSEARCH
000046] Pixel(80aad4) Next(032046) OFfset(000001) _BSEARCH
000047] Pixel(80aaff) Next(031542) Offset(000000) _BSEARCH
000048] Pixel(80d4aa) Next(031390) OFffset(000004) _BSEARCH
0000497 Pixel(80d4d4) Next(031065) OFfset(000008) _BSEARCH
0000507 Pixel(80d4ff) Next(027061) OFfset(000011) _BSEARCH
000051] Pixel(aa5500) Next(026766) OFfset(000008) _BSEARCH
000052] Pixel(aa5555) Next(026753) OFfset(000000) _BSEARCH
000053] Pixel(aaB02b) Next(026709) OFffset(000002) _BSEARCH
000054] Pixel(aaaa55) Next(026591) offsetc000001) “BSEARCH
000055] Pixel(aad480) Next(026492) Offset(000002) _BSEARCH
000056] PixelCaaffaa) Next(026336) Offset(000002) _BSEARCH
000057] pPixel(aaffd4) Next(026164) 0ffset(000004) _BSEARCH
000058] Pixel(aaffff) Next(024215) OFffset(000009) _BSEARCH
000059] Pixel (d4802b) Next(023231) OFffset(000008) _BSEARCH
000060] Pixel(d4aa55) Next(023157) OFfset(000001) _BSEARCH
000061] Pixel(d4d480) Next(023071) OFfset(000003) _BSEARCH
000062] Pixel(d4ffaa) Next(022971) OFffset(000003) _BSEARCH
000063] Pixel(d4ffdd) Next(022770) offset(000006) _BSEARCH
000064] Pixel(d4FFFF) Next(020545) OFfset(000009) _BSEARCH
000065] Pixel(ffaa55) Next(020453) OFfser(000004) _BSEARCH
000066] Pixel(ffaa80) Next(020300) OFffset(000000) _BSEARCH
000067] Pixel(Ffd480) Next(019929) Offset(000006) _BSEARCH
000068] Pixel(ffffaa) Next(019455) 0ffset(000008) _BSEARCH
[000069] Pixel (FFFFd4) Next(018332) OFffset(000012) _BSEARCH
[000070] Pixel CFFFFFF) Next(000071) Offset(000014) _BSEARCH

FIG. 16

U.S. Patent Oct. 27, 2015 Sheet 17 of 57 US 9,171,207 B1

TABLE-01

DFA

State Pixel Next offset ActionCode
[058316] 000000 058317 000000 _BSEARCH
[058317] aad4aa 058318 000000 _BSEARCH
[058318] aaffff 058319 000000 _BSEARCH
[058319] 80d4ff 058320 000000 _BSEARCH
[058320] 000055 058321 000000 _BSEARCH
[058321] 550000 058322 000000 _BSEARCH
[058322] 2b0000 058323 000000 _BSEARCH
058323] 2b80d4 058324 000000 _BSEARCH
[058324] fffff 058325 000005 _BSEARCH
[058325] 802h00 058346 000001 _RECOGNIZE
[058326] aa5500 058344 000001 _RECOGNIZE
[058327] ffaab5s 058342 000001 _RECOGNIZE
[058328] ffd480 058340 000001 _RECOGNIZE
[058329] ffffaa 058332 000007 _RECOGNIZE
[058330] et 058331 000000 _RECOGNIZE

TABLE-02

DFA

State CodePoints Glyphindex GlyphColumn OverlapCode
[058331] $ 0 04 overlapCode_00
[058332] $) 0 04 overlapCode_01
[058333] $) 1 00 overlapCode_02
[058334] $1] 0 04 overlapCode_01
[058335] $1] 1 00 overlapCode_02
058336 $_ 0 04 overlapCode_01
[058337] $_ 1 00 overlapCode_02
[058338] Sy 0 04 OverlapCode_01
[058339] $y 1 00 OverlapCode_02
[058340] $} 0 04 OverlapCode_01
(058341] $} 1 00 overlapCode_02
[058342] $p 0 04 overlapCode_01
[058343] $p 1 00 OverlapCode_02
058344] $f 0 04 overlapCode_01
[058345] $f 1 00 overlapCode_02
[058346] $3 0 04 overlapCode_01
[058347] $3 1 01 overlapCode_02

L
0
.
~

U.S. Patent Oct. 27, 2015 Sheet 18 of 57 US 9,171,207 B1

555

FIG. 18

U.S. Patent Oct. 27, 2015 Sheet 19 of 57 US 9,171,207 B1

560

.

T

B B

- 560

FIG. 19

U.S. Patent Oct. 27, 2015 Sheet 20 of 57 US 9,171,207 B1

565

FIG. 20

U.S. Patent Oct. 27, 2015 Sheet 21 of 57 US 9,171,207 B1

600

605

610

FIG. 21

U.S. Patent Oct. 27, 2015 Sheet 22 of 57 US 9,171,207 B1

615 ————————p

625

FIG. 22

U.S. Patent

Oct. 27,2015 Sheet 23 of 57 US 9,171,207 B1

630

640

FIG. 23

U.S. Patent Oct. 27, 2015 Sheet 24 of 57 US 9,171,207 B1

645

645

FIG. 24

U.S. Patent Oct. 27, 2015 Sheet 25 of 57 US 9,171,207 B1

650

650

FIG. 25

U.S. Patent Oct. 27, 2015 Sheet 26 of 57 US 9,171,207 B1

FIGURE FIGURE | Glyphindex 0 | Glyphindex 1 | GlyphIndex 2

ITEM | OverlapCode | oOverlapCode OverlapCode
21 600 0 - -
21 605 1 2 _
21 610 3 4 -
22 615 5 6 _
22 620 7 8 _
22 625 9 10 11
23 630 12 13 14
23 635 15 16 17
23 640 18 19 20
24 645 21 22 23
25 650 24 25 26

FIG. 26

U.S. Patent Oct. 27, 2015 Sheet 27 of 57 US 9,171,207 B1

ﬂl

b._»l

o

th

1

-«4|

B

,wl i-_:,wl

FIG. 27

U.S. Patent Oct. 27, 2015 Sheet 28 of 57 US 9,171,207 B1

FIG. 28

U.S. Patent Oct. 27, 2015 Sheet 29 of 57 US 9,171,207 B1
[000002] ffffff Next(000003) 0ffset(000067) _BSEARCH
[000068] ffffaa Next(019455) Offset(000008) _BSEARCH
[019461] ffaa55 Next(019651) oOffset(000001) _BSEARCH
[019651] ffaa55 Next(019661) 0ffset(000000) _BSEARCH
[019661] ffaa80 Next(019662) 0ffset(000000) _BSEARCH
[019662] ffffff Next(019663) o0Offset(000000) _BSEARCH
[019663] ffffff Next(019664) 0ffset(000000) _BSEARCH
1019664] ffFfff Next(019665) ©Offset(000000) _BSEARCH
[019665] ffffff Next(019666) 0ffset(000000) _BSEARCH
[019666] ffffff Next(019667) 0ffset(000005) _BSEARCH
[019668] aa5500 Next(019687) offset(000001) _RECOGNIZE
[019687] 'f Glyphindex(0) GlyphColumn(00) OverlapCode 05
[019688] 'f Glyphindex(1l) &GlyphColumn(00) oOverlapCode_06
[000002] ffffff Next(000003) o0ffset(000067) _BSEARCH
[000020] 550000 Next(039687) 0ffset(000007) _BSEARCH
[039687] 00002b Next(039952) 0Offset(000000) _BSEARCH
[039952] 0055aa Next(039953) offset(000001) _BSEARCH
[039954] 80d4ff Next(039955) 0ffset(000000) _BSEARCH
[039955] fFFFFFf Next(039956) 0ffset(000001) _BSEARCH
[039957] fFfffff Next(039958) o0ffset(000002) _BSEARCH
[039960] ffffff Next(039961) 0ffset(000005) _BSEARCH
[039965] ffffd4 Next(040003) Offset(000002) _BSEARCH
[040004] ffffaa Next(040021) o0ffset(000000) _BSEARCH
[040021] 000000 Next(040022) 0ffset(000001) _RECOGNIZE
[040022] 'f Glyphindex(0) GlyphColumn(01) OverlapCode_05
[040023] 'f Glyphindex(1l) Glyphcolumn(01) overlapcCode 06
[000002] ffFFFF Next(000003) Offset(000067) _BSEARCH
[000019] 2b80d4 Next(040106) 0ffset(000020) _BSEARCH
[040118] 80d4ff Next(041827) 0ffset(000004) _BSEARCH
[041831] ffffff Next(041832) 0ffset(000005) _BSEARCH
[041832] d4802b Next(042243) o0ffset(000002) _BSEARCH
[042243] ffffaa Next (042274) Offset(000001) _BSEARCH
[042274] ffaa55 Next(042286) o0Offset(000000) _BSEARCH
[042286] d4802b Next(042287) 0ffset(000000) _BSEARCH
[042287] 802b00 Next(042288) 0ffset(000000) _BSEARCH
[042288] 55002b Next(042289) 0ffset(000001) _BSEARCH
[042289] 2b80aa Next(042293) o0ffset(000002) _RECOGNIZE
[042293] 'fj GlyphIndex(0) GlyphColumn(02) OverlapCode 21
1042294] 'f] GlyphIndex(l) GlyphColumn(02) oOverlapCode_22
[042295] 'f3 GlyphIndex(2) GlyphColumn(00) overlapCode_23

FIG. 29

U.S. Patent Oct. 27, 2015 Sheet 30 of 57 US 9,171,207 B1
[000002] ffEfff Next(000003) offset(000067) _BSEARCH
[000070] FfFfff Next(000071) offset(000014) _BSEARCH
[000082] ffd480 Next(015525) o0Offset(000003) _BSEARCH
[015526] aa5500 Next(015545) 0ffset(000002) _BSEARCH
[015545] 000000 Next(015698) 0ffset(000000) _BSEARCH
[015698] 550000 Next(015699) 0ffset(000000) _BSEARCH
[015699] 00002b Next(015700) offset(000000) _BSEARCH
[015700] 002b80C Next(015701) oOffset(000000) _BSEARCH
[015701] 2b80d4 Next(015702) 0ffset(000000) _BSEARCH
[015702] 80d4ff Next(015703) 0ffset(000005) _BSEARCH
[015703] 802b00 Next(015724) oOffset(000001) _RECOGNIZE
[015724] 3 Glyphindex(0) GlyphColumn(03) overlapCode_01
[015725] f3 Glyphindex(1) GlyphColumn(0l) oOverlapCode_02
[000002] ffFFff Next(000003) Offset(000067) _BSEARCH
[000059] d4802b Next(023231) 0ffset(000008) _BSEARCH
[023233] 2b002b Next(023874) 0ffset(000001) _BSEARCH
[023874] 002b80 Next(023884) 0ffset(000000) _BSEARCH
[023884] 000000 Next(023885) 0ffset(000001) _BSEARCH
[023886] 55aaff Next(023887) oOffset(000001) _BSEARCH
[023888] 80d4ff Next(023889) offset(000002) _BSEARCH
[023891] d4ffff Next(023892) o0ffset(000005) _BSEARCH
[023897] ffFfff Next(023898) O0ffset(000004) _BSEARCH
[023900] ffffaa Next(023915) O0ffset(000003) _BSEARCH
[023915] 000000 Next(023925) o0ffset(000001) _RECOGNIZE
[023925] fj GlyphIndex(0) GlyphColumn(04) OverlapCode 01
[023926] f3 GlyphiIndex(1l) GlyphColumn(02) overlapCode_02
[000002] FFFfff Next(000003) 0Offset(000067) _BSEARCH
[000003] 000000 Next(052301) offset(000040) _BSEARCH
[052316] 55552b Next(056640) 0ffset(000002) _BSEARCH
[056642] d4Ffff Next(056643) 0ffset(000005) _BSEARCH
[056644] 555555 Next(057037) offset(000002) _BSEARCH
[057038] ffffd4 Next(057060) 0ffset(000000) _BSEARCH
[057060] ffffaa Next(057061) Offset(000000) _BSEARCH
[057061] ffaa55 Next(057062) 0ffset(000000) _BSEARCH
[057062] aa5500 Next(057063) 0ffset(000000) _BSEARCH
[057063] 550000 Next(057064) 0offset(000001) _BSEARCH
[057065] 2b80d4 Next(057066) 0ffset(000001) _RECOGNIZE
[057066] fj GlyphIndex(0) GlyphColumn(05) OverlapCode 01
[057067] f3 GlyphIndex(1) GlyphColumn(03) oOverlapCode_02

FIG. 30

U.S. Patent Oct. 27, 2015 Sheet 31 of 57 US 9,171,207 B1
[000002] ffffff Next(000003) 0Offset(000067) _BSEARCH
[000015] 2b5555 Next(044586) offset(000007) _BSEARCH
[044587] 2b80d4 Next(044699) 0ffset(000000) _BSEARCH
[044699] fFfFff Next(044700) 0ffset(000000) _BSEARCH
[044700] 000000 Next(044701) 0ffset(000000) _BSEARCH
[044701] 802b00 Next(044702) 0ffset(000000) _BSEARCH
[044702] 55002b Next(044703) 0ffset(000000) _BSEARCH
[044703] 002b80 Next(044704) 0ffset(000000) _BSEARCH
[044704] 0055aa Next(044705) Offset(000000) _BSEARCH
[044705] 55aaff Next(044706) offset(000005) _BSEARCH
[044711] ffffff Next(044712) offset(000001) _RECOGNIZE
[044712] fj GlyphiIndex(0) GlyphColumn(06) OverlapCode_01
[044713] f3 Glyphindex(1) GlyphColumn(04) oOverlapCode_02
[000002] fffFff Next(000003) 0offset(000067) _BSEARCH
1000011] 2b0000 Next(045173) 0Offset(000006) BSEARCH
[045179] ffffff Next(045180) 0ffset(000000) _BSEARCH
[045180] ffffff Next(045181) 0ffset(000001) _BSEARCH
[045182] 0055aa Next(045183) 0offset(000000) _BSEARCH
[045183] 55aaff Next(045184) 0ffset(000001) _BSEARCH
[045185] 80d4ff Next(045186) 0ffset(000002) _BSEARCH
[045188] d4ffff Next(04518%) 0Offset(000005) _BSEARCH
[045194] fFfFFff Next(045195) offset(000004) _BSEARCH
1045199] fFffff Next(045200) o0ffset(000001) _BSEARCH
[045201] fFFfff Next(045202) 0Offset(000000) _RECOGNIZE
[045202] j Glyphindex(0) GlyphColumn(05) oOverlapCode_00
[000002] ffffff Next(000003) Offset(000067) _BSEARCH
[000036] 55aaff Next(033429) offset(000012) _BSEARCH
[033441] fTfffff Next(033442) offset(000005) _BSEARCH
[033447] fFffff Next (033448) Offset(000011) _BSEARCH
[033459] fffFff Next(033460) o0ffset(000007) _BSEARCH
[033467] fFFfff Next(033468) 0ffset(000008) _BSEARCH
[033476] ffffff Next(033477) Offset(000006) _BSEARCH
[033483] fFFFFFf Next(033484) 0ffset(000014) _BSEARCH
1033498] ffffff Next(033499) 0ffset(000000) _BSEARCH
[033499] ffffff Next(033500) Offset(000007) _BSEARCH
[033507] fFfFfff Next(033508) offset(000003) _RECOGNIZE
[033508] v Glyphindex(0) GlyphColumn(07) OverlapCode_00
[033509] X GlyphiIndex(0) GlyphColumn(09) OverlapCode_00
(033510 GlyphIndex(0) GlyphColumn(06) oOverlapCode_00
[033511] % Glyphindex(0) GlyphColumn(05) OverlapCode_00

FIG. 31

U.S. Patent Oct. 27, 2015 Sheet 32 of 57 US 9,171,207 B1

i

it mi Ai ol el
: (I

4
i

N

4

i

FIG. 32

U.S. Patent Oct. 27, 2015 Sheet 33 of 57 US 9,171,207 B1

FIG. 33

U.S. Patent Oct. 27, 2015 Sheet 34 of 57 US 9,171,207 B1

700
Start of a process to
recognize character glyphs
in a graphic image
705

! e

Proceed through input image from
top leftimost pixel to botiom
srightmost pixel

I e

Process each image pixel
using the DFA recognizer

S

Siore recognized glyph
pixelcolumns

800

710

745

A 4 /
Combine together recognized glyph
pixelcolumns into correctly matched

whole glyphs

k4

gnd of a process o
recognize character glyphs
in a graphic imags

FIG. 34

U.S. Patent Oct. 27, 2015

Sheet 35 of 57

800

e .
~ Begin process each

\

image pixel using the
DFA recognizer

¥

Pixel = Image[ROW]COL];
CurrentState = O;

/810

/A

US 9,171,207 B1

3 820

FIG. 35

switch
(DFA[CurrentSiate]
ActionCode)

830 _RECOGNIZE

\

_BSEARCH

¥

AN
ReportMaiches
{DFA[Siatel.Next,
DFA[Statel.Offset);

NextState = BinarySearch{Pixal,
DFA[State].Next,
OFA[State] Offset);

]

NexiState == 0

YES

y

End process each\
image pixel using the

DFA recognizer /’

(

AN

850

860

ROW = ROW + 1;
Pixel = image[ROWHCOL];
CusrentState = NexiStale;

840

U.S. Patent Oct. 27, 2015 Sheet 36 of 57 US 9,171,207 B1

//
// One PixelColumn's Matched _RECOGNIZE Node
;; pointing to one DFA_Node _IDENTIFIER Nodes

struct Matcheditem {
uint32 ScreenRow;
uint32 Screencol;
uint32 NodeNumber;

I

/7
// Matches PixelColumn (if any) at Image[ROW][COL]

inline bool DFA_Type::MatchPixelColumn(Array2D<uint32>& Image,
uint32 ROW,
uint32 CoL,
MatchItem& Matched)

int STATE = 0;

TOP:
iwitch(DFA[STATE].ActionCode)

case _BSEARCH:
if (ROW >= Image.height())
return false;

STATE = BinarySearch(Image[Row] [cOL],
DFA[STATE] .Next, DFA[STATE].offset);
if (ISTATE)
return false;

ROW++;
goto TOP;

case _RECOGNIZE:

Matched.ImageRow = ROW - 1;
Matched.ImageCol = COL;
Matched.NodeNumber = STATE;

return true;

default:
return false;

return false;

FIG. 36

US 9,171,207 B1

Sheet 37 of 57

Oct. 27, 2015

|4

faad

U.S. Patent

_.-..... 1561

U.S. Patent Oct. 27, 2015 Sheet 38 of 57 US 9,171,207 B1
DFA
State Pixel Next offset ActionCode
[000001] aaaaaa 058316 000000 _BSEARCH
[058316] 000000 058317 Q00000 _BSEARCH
[058317] aad4aa 058318 000000 _BSEARCH
[058318] aaffff 058319 000000 _BSEARCH
[058319] 80d4ff 058320 000000 _BSEARCH
[058320] 000055 058321 000000 _BSEARCH
[058321] 550000 058322 (000000 _BSEARCH
[058322] 2b0000 058323 000000 _BSEARCH
[058323] 2b80d4 058324 000000 _BSEARCH
[058324] ffffff 058325 000005 _BSEARCH
[058330] ffffff 058331 000000 _RECOGNIZE
DFA
State CodePoint GlyphiIndex GlyphColumn OverlapCode
[058331] $ 04 overlapCode_00

U.S. Patent Oct. 27, 2015 Sheet 39 of 57 US 9,171,207 B1
[000002] ffffff Next (000003) offset(000067) _BSEARCH
[000070] ffffff Next(000071) offset(000014) _BSEARCH
[000085] fffFff Next(000086) Offset(000016) _BSEARCH
[000102] ffffff Next(000103) 0offset(000049) _BSEARCH
[000152] fFffFfff Next(000153) o0offset(000022) _BSEARCH
[000175] ffffff Next(000176) 0Offset(000010) _BSEARCH
[000180] d4802b Next(001005) Offset(000000) _BSEARCH
[001005] aa5500 Next(001006) 0ffset(000001) _BSEARCH
[001007] ffffaa Next(001008) 0ffset(000000) _BSEARCH
[001008] ffffff Next(001009) 0Offset(000000) _BSEARCH
[001009] ffFfff Next (001010) 0ffset(000000) _RECOGNIZE
[001010] $ Glyphindex(0) Glyphcolumn(00) oOverlapcCode_00
[000002] ffffff Next(000003) Offset(000067) _BSEARCH
[000069] ffffd4 Next(018332) 0ffset(000012) _BSEARCH
[018338] d4802b Next(019333) o0Offset(000002) _BSEARCH
[019335] d4802b Next(019336) 0Offset(000000) _BSEARCH
[019336] ffffaa Next(019337) o0ffset(000000) _BSEARCH
[019337] ffffff Next(019338) 0Offset(000000) _BSEARCH
(019338] 55aaff Next(019339) offset(000000) _BSEARCH
[019339] 0055aa Next(019340) 0ffset(000000) _BSEARCH
[019340] 550000 Next(019341) Offset(000000) _BSEARCH
[019341] f£fd480 Next(019342) 0ffset(000000) _BSEARCH
[019342] ffFFFf Next(019343) 0ffset(000000) _RECOGNIZE
[019343] % GlyphIndex(0) GlyphColumn(0l) oOverlapCode_00
[000002] ffFFFF Next(000003) Offset(000067) _BSEARCH
[000037] 802b00 Next(032863) Offset(000009) _BSEARCH
[032864] 002b80 Next(033360) 0Offset(000002) _BSEARCH
[033360] 00002b Next(033379) offset(000000) _BSEARCH
[033379] 550000 Next(033380) 0Offset(000000) _BSEARCH
[033380] ffffaa Next(033381) offset(000000) _BSEARCH
[033381] ffaa80 Next(033382) 0ffset(000000) _BSEARCH
[033382] a2a8080 Next(033383) 0Offset(000000) _BSEARCH
[033383] 000000 Next(033384) 0ffset(000000) _BSEARCH
[033384] 80aaff Next(033385) offset(000000) _BSEARCH
[033385] ffffff Next(033386) offset(000000) _RECOGNIZE
[033386] $ Glyphindex(0) GlyphColumn{02) oOverlapCode_00

FIG. 39

US 9,171,207 B1

U.S. Patent Oct. 27, 2015 Sheet 40 of 57

[000002] ffffff Next (000003) offset(000067) _BSEARCH
[000003] 000000 Next(052301) offset(000040) _BSEARCH
[052333] d4d4aa Next(054221) 0offset(000000) _BSEARCH

[054221] 555580 Next(054222) offset(000000) _BSEARCH
[054222] 00002b Next(054223) 0ffset(000000) _BSEARCH
[054223] 550000 Next(054224) 0ffset(000000) _BSEARCH
[054224] 80d4aa Next (054225) offset (000000) _RSEARCH
[054225] d4d480 Next(054226) offset(000000) _BSEARCH
[054226] 000000 Next(054227) offset(000000) _BSEARCH
[054227] ffffff Next(054228) 0ffset(000001) _BSEARCH
[054229] fFFFFf Next(054230) Offset(000000) _RECOGNIZE
[054230] $ Glyphindex (0) GlyphColumn(03) oOverlapCode_00
[000001] aaaaaa Next(058316) 0ffset(000000) _BSEARCH
[058316] 000000 Next(058317) offset(000000) _BSEARCH
[058317] aad4aa Next(058318) Offset(000000) _BSEARCH
[058318] aaffff Next (058319) offset(000000) _BSEARCH
[058319] 80d4ff Next(058320) 0ffset(000000) _BSEARCH
[058320] 000055 Next(058321) offset(000000) _BSEARCH
[058321] 550000 Next(058322) 0ffset(000000) _BSEARCH
[058322] 2b0000 Next(058323) 0ffset(000000) _BSEARCH
[058323] 2b80d4 Next(058324) offset(000000) _BSEARCH
[058324] fFFFFf Next(058325) Offset(000005) _BSEARCH
[058330] ffffff Next(058331) offset(000000) _RECOGNIZE
[058331] §$ Glyphindex (0) GlyphColumn(04) overlapCode_00
[000002] fFfffff Next(000003) Offset(000067) _BSEARCH
0000071 002b80 Next(048032) 0ffset(000007) _BSEARCH
[048036] 5555aa Next(048348) Offset(000000) _BSEARCH
[048348] ffffff Next(048349) o0ffset(000001) _BSEARCH
[048350] ffffff Next(048351) 0ffset(000000) _BSEARCH
[048351] aaffff Next(048352) 0ffset(000001) _BSEARCH
[048353] 55aaff Next(048354) 0ffset(000002) _BSEARCH
[048356] 55aaff Next(048357) Offset (000005) _BSEARCH
[048362] FFFFFf Next(048363) Offset(000004) _BSEARCH
[048367] ffffff Next(048368) 0ffset(000001) _BSEARCH
[048369] ffffff Next(048370) offset(000000) _RECOGNIZE
[048370] $ GlyphIndex{(0) GlyphColumn(05) oOverlapCode_00

FIG.

40

US 9,171,207 B1

U.S. Patent Oct. 27, 2015 Sheet 41 of 57

[000002] fFfFfff Next(000003) Offset(000067) _BSEARCH

| 000064] d4ffff Next(020545) 0ffset(000009) _BSEARCH
[020554] fFFffff Next(020555) 0ffset(000005) _BSEARCH
[020560] ffffff Next(020561) offset(000011) _BSEARCH
[020572] ffffff Next(020573) offset (000006) _BSEARCH
[020579] fFFFFFF Next(020580) 0Offset(000008) _BSEARCH
[020588] ffffff Next(020589) o0Offset(000006) _BSEARCH
[020595] ffffff Next(020596) 0ffset(000007) _BSEARCH
[020603] fFFfFf Next(020604) Offset(000000) _BSEARCH
[020604] fFFFFFF Next(020605) 0Offset(000007) _BSEARCH
[020612] fFFFFf Next(020613) Offset(000002) _RECOGNIZE
[020613] $ GlyphIndex(0) GlyphColumn(06) OverlapCode_00
[020614] (GlyphIndex(0) GlyphColumn(05) overlapCode_00
[020615] 5 GlyphIndex(0) GlyphColumn(06) overlapCode_00

FIG. 41

US 9,171,207 B1

Sheet 42 of 57

Oct. 27, 2015

U.S. Patent

o

e

_2 _5

b s

=

730

FIG. 42

U.S. Patent Oct. 27, 2015 Sheet 43 of 57 US 9,171,207 B1
[000001] aaaaaa Next(058316) 0ffset(000000) _BSEARCH
[058316] 000000 Next(058317) 0ffset(000000) _BSEARCH
[058317] aad4aa Next(058318) 0ffset(000000) _BSEARCH
[058318] aaffff Next(058319) 0ffset(000000) _BSEARCH
[058319] 80d4ff Next(058320) 0ffset(000000) _BSEARCH
[058320] 000055 Next(058321) offset(000000) _BSEARCH
[058321] 550000 Next(058322) 0ffset(000000) _BSEARCH
[058322] 2b0000 Next(058323) offset(000000) _BSEARCH
[058323] 2b80d4 Next(058324) 0ffset(000000) _BSEARCH
[058324] fFFFFFF Next(058325) 0ffset(000005) _BSEARCH
[058329] ffffaa Next(058332) 0ffset(000007) _RECOGNIZE
[058332] %) Glyphindex(0) GlyphColumn(04) OverlapCode_01
[058333] $) GlyphIndex(1) GlyphColumn(0Q0) OverlapCode_02
[058334] §] Glyphindex(0) GlyphColumn(04) overlapCode_01
[058335] %1 Glyphindex(1) GlyphColumn(00) overlapcCode_02
[058336] $_ Glyphindex(0) GlyphColumn(04) oOverlapCode_01
[058337] _ Glyphindex(1) GlyphColumn(00) overlapCode_02
[058338] %y Glyphindex(0) GlyphColumn(04) OverlapCode_01
[058339] Sy GlyphiIndex(l) GlyphColumn(00) oOverlapCode_02

FIG.

43

U.S. Patent Oct. 27, 2015 Sheet 44 of 57 US 9,171,207 B1

735 typedef unsigned int uint32;

Nstruct MatchedGlyph { .
uint32 CodePoint; // UTF-32 uUnicode Codepoint value

uint32 top; // Pixel Coordinate within Graphic Image
uint32 left; // Pixel Coordinate within Graphic Image
uint32 bottom; // Pixel Coordinate within Graphic Image
uint32 right; // Pixel Coordinate within Graphic Image

740\ d

~class MatchedGlyphList {
private: .
std: :vector<MatchedGlyph> GlyphList;

~struct Identifier_Node {))
uint32 Coderoints[3]; // Three UTF-32 unicode CodePoints

uint8 GlyphIndex; // Index into above CodePoints[]
uint8 GlyphColumn; // Zero to GlyphPixelwidth - 1
uint8 OverlapCode; // 0 - 26

~class Identifier_NodeList {
std::vector<Identifier_Node> Overlaps;

~class Pixelcolumn {
private:
Identifier_NodeList OverlapList;
std: :vector<uint32> Pixels;

~class PixelColumnList { .
std: :vector<PixelColumn> List;

FIG. 44

U.S. Patent Oct. 27, 2015 Sheet 45 of 57 US 9,171,207 B1

745

Start of a process to combine
glyph pixelcolumns info correctly
maiched whole glyphs

PixelColumn Validation]

¥ /900

Glyph Validation

A

End of a process io combine
glyph pixelcolumns into correctly
matched whole glyphs

FIG. 45

U.S. Patent

Oct. 27,2015 Sheet 46 of 57 US 9,171,207 B1

850

Start of PixelColumn
Validation Process

, /860
Efiminate Pixelcolumns that P
do not form Whole Glyphs

L4 /870

Eliminate PixelColumns y
Lacking Required
Corrgsponding OverlapCodes

End of PixelColumn
Validation Process

FIG. 46

U.S. Patent

Oct. 27, 2015

Sheet 47 of 57

Start of process to
Validate Whole Glyphs
against each other

¥

900

Correct Erroneocus Glyph Order

-

k.

y

Eliminate

Erroneous

Horizontal Substring Glyphs

¥

Eliminate Erronecus Invisible

Glyph Boun

dary Glyphs

PixelsBetween[}i] Validation

A4

Eliminate

Erroneous

Vertical Substring Glyphs

\ 4

End of p

rocess {o

Validate Whole Glyphs

against e

ach other

FIG. 47

US 9,171,207 B1

U.S. Patent Oct. 27, 2015 Sheet 48 of 57 US 9,171,207 B1

DFA Recognition Trace 01

ImageRow ImageColumn DFA Node CodePoint Glyphindex GlyphColumn oOverlapCode
10 6 [1010] $ 0 00 00
10 7 [19343] $ 0 01 00
10 8 [33386] $ 0 02 00
10 9 [54230] $ 0 03 00
10 10 [58332])] 0 04 01
10 10 [58333] $) 1 00 02
10 10 [58334] $] 0 04 01
10 10 [58335] $] 1 00 02
10 10 [58336] $_ 0 04 01
10 10 [58337] _ 1 00 02
10 10 [58338] $y 0 04 01
10 10 [58339] $y 1 00 02
10 11 [48371] $] 0 05 01
10 11 [48372] $] 1 01 02
10 11 [48373] $_ 0 05 01
10 11 [48374] S 1 01 02
10 11 [48375] sy 0 05 01
10 11 [48376] Sy 1 01 02
10 12 [20674] $] 0 06 01
10 12 [20675] $] 1 02 02
10 12 [20676] 5] 0 06 01
10 12 [20677] 5] 1 02 02
10 13 [19506]] 0 03 00
10 14 [39717]] 0 04 00
10 15 [57504] 1 0 05 00
10 16 [35721]] 0 06 00

PixelsBetween[CH1] [CH2]
cpPl CP2 value GlyphPixelwidth
$) -3 $ 7
$] -3) 6
$ _ -3] 7
$ y -3 —~ 8
5 1 -3 Y 7

US 9,171,207 B1

Sheet 49 of 57

Oct. 27, 2015

U.S. Patent

67 "Old

{ 8z

PLLBA S® pa)JBUl UG 10U dARY 3IeY] SOPON ||V // :()SOPONpL|RAUIDSRIT 12

{ 92

o

L(XOpUTUWN [0D | DX Ld “XOPUISPON ‘1ULOLIPOD ‘YIPLMIIXLdYdA|D “v4Q)SIPONPLLBANJIEK €7
((T + XepuIuwn|od|3Xid ‘uwnjodabewrlo’ 2?
f1ULOdOpPOD ‘YAPLMIOXLdAYdA|D ‘v4Q)Sumn[0D[9XLdIXONYIIeW) Ji 1z

{umn podobewT F [XopuIuwng o) 9XLd]ISLIPIIID9S = uwn|odobewIl o1 zeaun 0Z

f [xopurydA|9]siutodapod [JOquWnNNOPON Jvd4d = 2ULOLIPOD ZEIUuLn 6L
IXopurydA |9 [JOqUNNDOPON]v4a = XIpuIydA|D zgiuLn ST

} LT

(0 == uwn|odydA| 5[JOqUNNIpON]Jvia) Ji 9T

i [XOpUIDPON]ISLISOPON" [XSpUIUWN| 0D | 9XLd]ISLIPOII|aS = JIQUNNIPON ZEIuLn ST
} $1

(++XOPUIIPON {()OZLS ISLISOPON" [XOpUTULN| 0D 2XLd]ISLIPOIIDIS > XDPUIDPON €T
*0) = XSpPUIspoON ggiuLn) Jo4) T

T

(HHXDPUIUUN| 0D | 9XLd {()DZLS'ISLIPOIII IS > XIpUIUWN| 0D 3XLd (0]

{0 = xopurumn|od|9Xxtid ggiuin) Joj 60

PLLBAUI S® SOPON JOLJLIUDPT vd4d L|® JJew // :(85|el)poiepL eAlasay 20

} L0

({lyapimLaxidydA|D mauL 90

‘V4a <|pON VAQ>J0IIDA:IpIS)SYdA| DO OYMIDD[3S: (IS LTISIPONPIIIB| IS PLOA)

// v0

ISLTOPON ISLIPOIIDOS WOJLJ) POSEJD dJe SOPON 3ISdYL // €0

\\\\ sydA|19 aoym wJoJ 10U op eyl SIPON UWN|0D|3XLd 11V ¥sedd // 20

// 10

052

U.S. Patent Oct. 27, 2015 Sheet 50 of 57 US 9,171,207 B1

DFA Recognition Trace 02

ImageRow ImageColumn DFA Node CodePoint GlyphIndex GlyphColumn OverlapCode
10 6 [1010] 3 0 00 00
10 7 [19343] g 0 01 00
10 8 [33386] $ 0 02 00
10 9 [54230] s 0 03 00
10 10 [58332] %) 0 04 01
10 10 [58334] $] 0 04 01
10 10 [58335] $] 1 00 02
10 10 [58336] 5 0 04 01
10 10 [58338] Sy 0 04 01
10 11 [48371] 3] 0 05 01
10 11 [48372] %] 1 01 02
10 11 [48373] S 0 05 01
10 11 [48375] Sy 0 05 01
10 12 [20674] $] 0 06 01
10 12 [20675] 5] 1 02 02
10 12 [20677] 5] 1 02 02
10 13 [19506] 1 0 03 00
10 14 [39717]] 0 04 00
10 15 [57504] 1 0 05 00
10 16 [35721] 1 0 06 a0

FIG. 50

U.S. Patent Oct. 27, 2015 Sheet 51 of 57 US 9,171,207 B1

DFA Recognition Trace 03

ImageRow ImageColumn DFA Node CodePoint Glyphindex GlyphColumn OverlapCode
T 6 [w10 s o o 0
10 7 [19343] $ 0 01 00
10 8 [33386] 3 0 02 00
10 9 [54230] 3 0 03 00
10 10 [58334] $] 0 04 01
10 10 [58335] $1 1 00 02
A N - I 5 2
10 12 [20674] $1 0 06 01
10 12 [20675] $] 1 02 02
10 13 [19506]] 0 03 00
10 14 [39717]] 0 04 00
10 15 [57504]] 0 05 00
10 16 [35721]] 0 06 00

FIG. 51

U.S. Patent

Oct. 27, 2015

Sheet 52 of 57

US 9,171,207 B1

IMAGE 111

B O LA A gL B pr_p P fE g pT g gm g g

.

i m

TABLE 222
CodePoint(!) Top{ 0) Left(6) Bottom(10) Right(7) { TON }
CodePoint(') Top(0) Left(7) Rottom(10) Right(7) { TOBP }
Codepoint(*) Top(0) Left(10) Bottom(10) Right(12) { TON }
CodePoint(') Top{ 0) Left(ll) Bottom(10) Right(1l) { TOBP }
CodePoint(.) Top(0) Left(14) Bottom(10) Right(14) { TOBN }
CodePoint(A) Top{ 0) Left(14) Bottom(10) Right{20) { TON, TOP }
Codeproint(.) Top(0) Left(20) Bottom(10) Right(20) { TOBP }

TON
TOoP
TOBP
TOBN

This Glyph Totally Overlaps Next Glyph
This Glyph Totally Overlaps Prior Glyph
This Glyph is Totally Overlapped By Prior Glyph
This Glyph is Totally overlapped By Next Glyph

FIG. 52

U.S. Patent Oct. 27, 2015 Sheet 53 of 57 US 9,171,207 B1

SelectedNodesList table

ImageRow ImageColumn DFA Node CodePoint GlyphIndex GlyphColumn OverlapCode
10 T 6 [w1 1 o 0 oo
10 ; Pesst 0 % 6
10 10 [1610] * 0 00 00
10 1 [o] 0 o 0
10 12 [1611] * 0 02 00
10 14 [55] . [+ 00 00
10 14 L 63] A 0 00 00
10 15 [159] A 0 01 00
10 16 [381] A 0 02 00
10 17 [818] A 0 03 00
10 18 [1880] A 0 04 00
10 19 [6844] A 0 05 00
B8 t@ s 3 5 %

U.S. Patent

Oct. 27,2015 Sheet 54 of 57 US 9,171,207 B1

fogE

-,ai

e
1

MatchedGl

—

760 770 780

yphList table 333

CodePoint(_)
CodePoint(_)
CodePoint())
CodePoint(_)

Top{ Q) Left(5) Bottom(1l0)
Top{ 0) treft(6) Bottom(10)
Top(0) treft(i0) Bottom(10)
Top(0) Left(15) Bottom(10)

Right(9)
Right(10)
Right(13)
Right(19)

FIG. 54

U.S. Patent

Oct. 27, 2015

Sheet 55 of 57

Start of a

process for

220

determining the dimensions and

placement

of glyphs

3

V

222

Determine and store the
BoundingBox coordiantes of glyphs

Ve

9

4

224

Determine and siore the
GlyphPixelWidths]]

)2

y

226

entent of the

Determine and store the vertical //

Fontinstance

L 4

End of a process for

determining the dimensions and

placement

of glyphs

FIG. 55

US 9,171,207 B1

U.S. Patent Oct. 27, 2015 Sheet 56 of 57

Begin Process to Eliminate
PixelColumns that do not 860
form Whole Glyphs

k.

Mark All Nodes Invalid
PixeiColumnindex = 0
Nodeindex = 0

US 9,171,207 B1

o
.

oo

$or

¥

Test And Mark Valid Nodes <

, AN

Nodelndex++

862

Nodelndex < Last

Node within
PixelColumn

Yes

PixelColumnindex++

BixelColumnindex
< Last PixelColumn

No

¥
Erase invalid Nodes

End Process to Eliminate
PixelColumns that do not
form Whole Glyphs

FIG. 56

U.S. Patent Oct. 27, 2015 Sheet 57 of 57 US 9,171,207 B1

862

Begin Process 1o Test
and Mark Valid Nodes

¥

NodeNumber =
SelectedList{PixelColumnindex]
.NodeList{Nodelndex]

864

DFA[NodeNumbet]
GlyphColumn ==

FIG. 57

Match Next
GlyphColumns

No

/ 866

Mark_Valid Nodes() -]

2

¥

End Process o Test
and Mark Valid Nodes

US 9,171,207 B1

1
METHOD AND SYSTEM FOR RECOGNIZING
MACHINE GENERATED CHARACTER
GLYPHS IN GRAPHIC IMAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority under 35 U.S.C.
sctn. 119(e) from U.S. Provisional Application Ser. No.
61/800,725, entitled “METHOD AND SYSTEM FOR REC-
OGNIZING MACHINE GENERATED CHARACTER
GLYPHS IN GRAPHIC IMAGES” and filed on Mar. 15,
2013, by Peter L. Olcott, the full disclosure of which is hereby
incorporated by reference. The present application relates to
U.S. Pat. No. 7,046,848 the full disclosure of which is hereby
incorporated by reference and Provisional Application Ser.
No. 60/314,184, entitled “Method for translating machine
generated graphical representations of characters into their
original collating sequence values” and filed on Aug. 22,
2001, by Peter L. Olcott, the full disclosure of which is hereby
incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to methods and systems for
recognizing character glyphs contained in graphic images.

BACKGROUND OF THE INVENTION

Intelligent recognition of bitmapped binary images of text
for the purpose of estimating their corresponding character
values is often referred to as optical character recognition
(“OCR”). Most OCR systems in use today utilize stochastic
processes to recognize the text in the graphic images. Because
stochastic processes are fundamentally based on chance or
probability, these systems are not always as reliable as may be
desired. Moreover, the processing time of such stochastic
processes can be quite high in some instances and thus not
particularly practical.

One attempt to overcome some of the above-noted defi-
ciencies is described in U.S. Pat. No. 5,321,773. The image
recognition technique disclosed in the *773 patent is a gram-
mar-based image modeling and recognition system that auto-
matically produces an image decoder based on a finite state
network. Although the system described in the *773 patent is
substantially faster than the traditional stochastic processes, it
is based on stochastic methods (like the traditional
approaches) and thus inherently involves chance or probabil-
ity. Another noteworthy disadvantage of the recognition sys-
tem in the *773 patent is that it requires extremely detailed
font metrics information for the characters to be recognized,
including character sidebearings and baseline depths which
typically cannot readily obtained. Yet another disadvantage of
the image recognition system disclosed in the *773 is that it
cannot recognize text when pairs of characters (which may be
denoted by black pixels on a white background) have black
pixels that overlap.

Since the first patent issued two other related technologies
directly dealing with machine generated character glyphs
were discovered:

The firstis a commercial product named Kleptomania from
a company named Structu Rise. According to the Pavel Sena-
torov CEO, at Structu Rise from its inception their product
Kleptomania is not based on Deterministic Finite Automaton
(DFA) technology, and its steps are not based on the consecu-
tive parts of a character.

10

15

20

25

30

35

40

45

50

55

60

65

2

After testing Kleptomania it was clear that the version of
Kleptomania downloaded 2007 Apr. 30 had substantially
lower accuracy than that of the working prototype of the
preferred embodiment of this invention. It was also apparent
that the technology of Kleptomania was unable to process
character glyphs that had been subject to ClearType® font
edge smoothing with any accuracy at all. From this primary
research it was determined that Kleptomania is fundamen-
tally different technology with substantially different capa-
bilities.

The second is a paper entitled: Fast Optical Character
Recognition through Glyph Hashing for Document Conver-
sion, by Kumar Chellapilla, Patrice Simard, and Radoslav
Nickolov all from Microsoft Research. Fighth International
Conference on Document Analysis and Recognition (ICDAR
’05) pp. 829-834

This technology is also quite different than the technology
of'the present invention. The only similarity is that the method
of'this paper also directly deals with machine generated char-
acter glyphs. This method is entirely incapable of recognizing
character glyphs from graphic images, and is not based on
DFA technology.

Every other system that has been encountered for recog-
nizing character glyphs was fundamentally based on a sto-
chastic process, and incapable of recognizing character
glyphs at typical 96 dots per inch (DPI), computer display
screen resolutions. Market leader OmniPage® 15 was tested
and utterly failed to recognize any characters on the test
sample submitted to their presales technical support.

In view of the above-noted deficiencies, it would be desir-
able to provide an image recognition system that is capable of
recognizing machine generated text in graphic images with
(at least in most cases) complete accuracy. It would further be
desirable to provide an image recognition system that is sub-
stantially faster than traditional OCR technology, but is also
able to recognize text having characters with overlapping
black (i.e., foreground) pixels. It would also be desirable to
provide an image recognition system that is capable of rec-
ognizing machine generated text in graphic images using font
metrics information that is readily obtainable.

SUMMARY OF THE INVENTION

According to the first aspect of an embodiment of the
present invention, a method for constructing a deterministic
finite automaton (DFA) for recognizing machine generated
character glyphs in a graphic image includes collecting indi-
vidual pixelcolumns of character glyphs to be recognized in
the graphic image. When these individual glyph pixelcol-
umns are collected every permutation of overlapping glyph
pixelcolumn to be recognized is included in the collected set
of pixelcolumns. The method further includes sorting the
collected glyph pixelcolumns, merging the identical prefixes
of these glyph pixelcolumns together, generating a DFA rec-
ognizer from the merged identical prefixes, such that the
number of DFA elements generated is substantially less than
the number of DFA states multiplied by the number of pos-
sible pixel RGB values, and storing the DFA.

These last two steps may be referred to separately or under-
stood as a single combined step. In the preferred embodiment
the DFA is generated directly into memory, thus the genera-
tion step and the storing step are combined into a single step.

The phrase “number of possible pixel RGB values” may be
considered relative to either a typical computer display
screen, or the input graphic image. In the case where an input
image is monochrome (two colors) and the FontInstance to be
recognized is also monochrome (two colors), the DFA may

US 9,171,207 B1

3

not have substantially fewer elements than the number of
possible image colors multiplied by the number of DFA
states. In this case the “number of possible pixel RGB values”
is to explicitly refer to the typical computer display screen.

According to a another aspect of an embodiment of the
present invention, a method for recognizing machine gener-
ated character glyphs from graphic image includes combin-
ing together the recognized individual glyph pixelcolumns
into correctly matched whole glyphs by eliminating any rec-
ognized glyph pixelcolumns that do not correctly form whole
glyphs.

According to another aspect of an embodiment of the
present invention, a method for recognizing machine gener-
ated character glyphs from graphic image includes validating
the recognized whole glyphs against each other to eliminate
any erroneously matched glyphs.

According to a another aspect of an embodiment of the
present invention, a method for recognizing machine gener-
ated character glyphs from graphic image for the purpose of
exchanging data between application programs.

These and other benefits and features of embodiments of
the invention will be apparent upon consideration of the fol-
lowing detailed description of preferred embodiments
thereof, presented in connection with the following drawings
in which like reference numerals are used to identify like
elements throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A, FIG. 1B, and FIG. 1C provide a simplified
example showing how glyph pixelcolumn data can be trans-
lated into a DFA recognizer.

FIG. 2 shows a logic flow diagram of an exemplary process
for constructing a DFA for recognizing individual pixelcol-
umns of machine generated character glyphs in a graphic
image.

FIG. 3 is atable of non-overlapped pixelcolumn data show-
ing a sample of the input to process 40 of FIG. 2 before this
data has been sorted.

FIG. 4 is a table of overlap pairs of pixelcolumn data
showing a sample of the input to process 40 of FIG. 2 before
this data has been sorted.

FIG. 5 is a table of overlap triads of pixelcolumn data
showing a sample of the input to process 40 of FIG. 2 before
this data has been sorted.

FIG. 6 is a table of pixelcolumn data showing a sample of
the first 34 rows of data used as input to process 40 of FIG. 2
after this data has been sorted.

FIG. 7 shows a logic flow diagram of an exemplary process
for collecting all pixelcolumns in a Fontlnstance including
every permutation of overlapping pixelcolumn.

FIG. 8 shows a logic flow diagram of an exemplary process
for collecting non-overlapping glyph pixelcolumns.

FIG. 9 provides exemplary C++ data structures DFA_N-
ode, SelectedNodes, and SelectedNodesList.

FIG. 10 shows a logic flow diagram of an exemplary pro-
cess for collecting double-overlapping glyph pixelcolumns.

FIG. 11 shows how the relative pixelcolumns numbers of
individual glyphs relate to the pixelcolumn numbers of an
input graphic image, and points out a double overlapping
(overlap pair) pixelcolumn 515.

FIG. 12 provides an exemplary C++ function for determin-
ing an OverlapCode.

FIG. 13 shows a logic flow diagram of an exemplary pro-
cess for collecting all triple overlapping glyph pixelcolumns.

10

15

20

25

30

40

45

50

55

60

65

4

FIG. 14 shows an example of a middle glyph 525 not
included in the triple overlap (or overlap triad) of pixelcolumn
520.

FIG. 15 Provides another example of a triple overlap (over-
lap triad) that does not include the middle glyph 535 in its
triple overlapping glyph pixelcolumn 530.

FIG. 16 shows the first 71 states of a constructed DFA.
State 540 is the DFA start state.

FIG. 17 shows the last 32 states of the DFA provided in
FIG. 16. TABLE-01 shows the State Transition nodes, and
TABLE-02 shows the Identifier nodes.

FIG. 18 provides an example of a double overlap (overlap
pair) glyph pixelcolumn 555.

FIG. 19 provides another example of a double overlap
(overlap pair) glyph pixelcolumn 560.

FIG. 20 provides an example of a triple overlap (overlap
triad) glyph pixelcolumn 565.

FIG. 21 through FIG. 25 show examples of all of the types
of'overlapping glyph pixelcolumns that are currently known.

FIG. 26 provides a table that corresponds to FIG. 21
through FIG. 25 indicating how OverlapCode values are asso-
ciated with the relative glyph positions {0,1,2} for the various
types of overlaps.

FIG. 27 and FIG. 28 show the glyphs provided in FIG. 24
in their original unmodified form.

FIG. 29, FIG. 30, and FIG. 31 provide a DFA execution
trace of the triple overlap shown in FIG. 27.

FIG. 32 and FIG. 33 show how the triple overlap (overlap
triad) of FIG. 25 looks before it has been modified.

FIG. 34 Shows a logic flow diagram of an exemplary pro-
cess for recognizing machine generated character glyphs in a
graphic image.

FIG. 35 Shows a logic flow diagram of an exemplary pro-
cess for processing glyph pixelcolumn pixels with a DFA
recognizer.

FIG. 36 Provides an exemplary C++ essentially equivalent
to the logic flow diagram provided in FIG. 35.

FIG. 37 Shows the fourth glyph pixelcolumn of the Dol-
larSign glyph.

FIG. 38 Provides an DFA execution trace recognizing the
fourth glyph pixelcolumn of FIG. 37.

FIG. 39 through FIG. 41 provide a DFA execution trace
recognizing all of the glyph pixelcolumns of the DollarSign
glyph shown in FIG. 37.

FIG. 42 Show an example of a double overlap (overlap
pair) as the tenth image pixelcolumn 725. This overlapping
image pixelcolumn is also shown as the fourth pixelcolumn of
the DollarSign glyph 730.

FIG. 43 Shows a DFA execution trace if pixelcolumn 725
of FIG. 42.

FIG. 44 Provides an exemplary C++ data structure
MatchedGlyphList used to provide the final output of the
recognition process 700 of F1G. 34. FIG. 44 also shows exem-
plary C++ class PixelColumnL ist used for collecting glyph
pixelcolumn data in process 100 of FIG. 2.

FIG. 45 shows a logic flow diagram of an exemplary pro-
cess 745 for combining together recognized glyph pixelcol-
umns into correctly matched whole glyphs.

FIG. 46 shows a logic flow diagram of an exemplary pro-
cess for validating the individual glyph pixelcolumns.

FIG. 47 shows a logic flow diagram of an exemplary pro-
cess 900 for validating the whole glyphs output of process
850.

FIG. 48 shows a concise DFA trace recognizing all of the
glyph pixelcolumns shown if FIG. 42. and two tables used to
explain subprocess 860 of process 850.

US 9,171,207 B1

5

FIG. 49 provides an exemplary C++ function that imple-
ments subprocess 860 of process 850.

FIG. 50 shows the remaining glyph pixelcolumns after the
validation step subprocess 860 of process 850 has occurred.

FIG. 51 shows the pixelcolumns of FIG. 50 after pixelcol-
umns lacking corresponding OverlapCodes have been
removed.

FIG. 52 and FIG. 53 show examples of erroneous horizon-
tal substring glyphs.

FIG. 54 provides an example of erroneous invisible glyph
boundaries.

FIG. 55 shows logic flow diagram of an exemplary process
220 to determine the dimensions and placement of glyphs.

FIG. 56, shows a logic flow diagram of an exemplary
process 860 to eliminate pixelcolumns that do not form whole
glyphs.

FIG. 57, shows a logic flow diagram of'a process 862 to test
and mar valid nodes.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

As persons skilled in the art will appreciate, many different
DFA recognizers and variations could be constructed based
on the principals and basic methods described below. The
currently preferred embodiment derives a DFA capable of
recognizing all character glyphs in a graphic image with
100% accuracy. This application describes a single preferred
embodiment.

All of' the specific examples provided in this disclosure are
for illustrative purposes only and are not intended to be lim-
iting. Persons skilled in the art would recognize numerous
alternatives these specific examples.

The basic concept of this invention is the recognition of
pixel patterns corresponding to machine generated character
glyphs using a deterministic finite automaton (DFA).

The primary benefit of using a DFA to recognize machine
generated character glyphs is that recognition can achieve
100% accuracy. 100% accuracy is generally not possible
using conventional stochastic optical character recognition
(OCR). The reason for this difference is that a DFA deter-
mines its results as contrasted with a stochastic process that
estimates its results. The DFA recognizer is also about two
orders of magnitude faster than conventional stochastic OCR
technology.

The DFA state transition function is defined by a state
transition table. The vertical dimension of this table specifies
a current state and the horizontal dimension specifies a cur-
rent input pixel RGB value. The intersection of the current
state and the current input specifies the next state in the state
transition sequence.

The current input pixel RGB value is an integer, and will be
referred to as the color of the pixel. The DFA determines its
next state entirely on the basis of its current input and its
current state.

The implementation of the state transition table can be
understood conceptually as a jagged two-dimensional array:
The vertical dimension of the state transition table includes
every contiguous value from zero to the number of DFA states
minus one. The horizontal dimension of the state transition
table (the jagged dimension) only includes the subset of pixel
RGB values that could be matched at the specific point in the
DFA state transition sequence determined by the current
state.

In U.S. Pat. No. 7,046,848 this conceptual jagged two-
dimensional array was referred to as a “Sparse Matrix”
defined as the common meaning of the term “Sparse” com-

20

40

45

55

6

bined with the common computer science meaning of the
term “Matrix”, a two dimensional array of elements. In other
words the state transition table is defined such that the number
of'table elements is substantially less than the number of DFA
states multiplied by the number of possible pixel RGB values.

This conceptual two-dimensional state transition table is
implemented as a single-dimensional array of DFA elements.
Each DFA element specifies a list of other DFA elements.
This list of other DFA elements implements the horizontal
(jagged) dimension of the conceptual two-dimensional state
transition table.

The vertical dimension of the conceptual two-dimensional
state transition table is accessed using the current state as the
single-dimensional array subscript.

The horizontal dimension of the conceptual two-dimen-
sional state transition table is accessed using the current input
to search the list of DFA elements specified by the current
state. This list has been sorted by pixel RGB values so that
binary search can be used as the search method.

When a match occurs, it occurs at a specific DFA element.
This specific DFA element then specifies another list of other
DFA elements. This next list is searched by obtaining the
pixel immediately below the previous current input pixel
within the input graphic image. This process continues until
either a DFA final state is reached, or the binary search fails to
match.

The above paragraphs describe those aspects of the current
invention that are the same as the technology described in
U.S. Pat. No. 7,046,848.

The difference between the DFA of this technology and the
DFA of U.S. Pat. No. 7,046,848 is that the DFA of this
technology only matches individual glyph pixelcolumns
instead of whole glyphs. Another step has been added to this
original process to combine together these individual glyph
pixelcolumns into correctly matched whole glyphs.

Because this DFA only matches individual pixelcolumns,
instead of whole glyphs, only the data from non-overlapped
glyphs and actual overlapping pixelcolumns need be included
in the DFA recognizer.

The technology shown in U.S. Pat. No. 7,046,848 stored
every permutation of DoubleOverlapping and TripleOverlap-
ping whole glyphs in its DFA recognizer. By only storing the
data from non-overlapped glyph pixelcolumns and actual
overlapping pixelcolumns instead of storing whole overlap-
ping glyphs we reduce memory requirements by about two
orders of magnitude. This reduction in memory requirements
provides two functional benefits:

a) Complex glyphs (glyphs with more than one bitmap per
CodePoint) can be recognized.

b) Much larger character sets can be recognized. Prelimi-
nary testing indicates that this improved technology is
capable of recognizing character sets as large as CJK Unified
Ideographs.

Individual glyphs are recognized by piecing together the
recognized overlapping and non-overlapping pixelcolumns.
Simplified Example of Creating a DFA Recognizer

The following simplified example will make the above
explanations more concrete. This example shows the creation
of'a DFA with only eleven states, and each glyph pixelcolumn
is only three pixels tall. The pixel RGB values have been
specified as sequences of the same decimal digit. Real glyph
pixelcolumn data is generally far more complex. This
example has been simplified as an aid to understanding.

The basic principles shown in this simplified example are
the same as those used in the working system prototype.

US 9,171,207 B1

7

Another example using real glyph pixelcolumn data will be
provided in the section entitled: CREATING THE DFA REC-
OGNIZER.

This simplified example will construct a DFA capable of
recognizing a single glyph pixelcolumn beginning at a spe-
cific pixel within a graphic image. To determine all of the
glyph pixelcolumns within a graphic image the resulting DFA
must be executed (beginning at its start state) using each pixel
of the input graphic image.

Referring now to FIGS. 1A, 1B, and 1C, a simplified
example of the process for constructing a DFA for hypotheti-
cal glyph pixelcolumns (A) through (E) will be described.
The state transition function of this DFA is entirely defined by
a current state and a current input.

Each row of table 10 shown in FIG. 1A describes exactly
one glyph pixelcolumn. Each column of this table describes
one row of the set of all glyph pixelcolumns. The column of
the table shown as FIG. 1A thatis labeled Pixel Row(0) shows
the topmost pixel RGB values of the set of all glyph pixelcol-
umns. This set of topmost pixel rows form the basis for
constructing the DFA start state.

The pixel RGB values for these glyph pixelcolumns are
shown as integers between 1111111 and 9999999, thus form-
ing the image bitmap for each of these three pixel tall glyph
pixelcolumns. The labels {A, B, C, D, E} signify glyph pix-
elcolumn identifiers, specifying exactly which glyph pixel-
column has been recognized.

The data shown in the table of FIG. 1A has already been
sorted, thus would be the output of step 50 of process 40 on
FIG. 2.

The bitmaps for these glyph pixelcolumns can be trans-
formed into a DFA recognizer by techniques that are well
known to persons skilled in the art. For the illustrated
example, the DFA recognizer can be constructed by merging
the identical prefixes of these glyph pixelcolumns together,
and then linking each prior table column (pixel row) to the
subsequent table column (pixel row) for which it forms the
prefix. Performing this transformation process results in a
state transition (or directed) graph 20 such as the one, shown
in FIG. 1B. This merging together of identical prefixes imple-
ments step 60 of process 40 of FIG. 2.

Graph 20 shown in FIG. 1B uses the notational conventions
that are typical for a deterministic finite automaton state tran-
sition diagram. As is conventional, the circular vertices (la-
beled 0,1,2,3,5 and A,B,C,D,E) in this graph denote states,
and the set of directed edges (labeled by the individual pixel
RGBvalues 1111111 through 9999999) denote the DFA state
transitions. The initial or start state is labeled 0, and the final
states (labeled A,B,C,D,E) are indicated by double circles.

The state transitions proceed from the top most pixel of the
glyph pixelcolumn, downward to the bottom most pixel of the
glyph pixelcolumn. Every time that a state transition occurs,
the next lower pixel of the input image becomes the current
input pixel.

As persons skilled in the art will understand, the DFA
recognizer of graph 20 begins at the DFA start state with its
input pixel RGB value and transitions to its next state based
on a comparison of that input value to the labels, {1111111,
and 2222222} If the DFA halts at a final state, then the DFA
is said to have accepted (or recognized) the specified glyph
pixelcolumn.

As persons skilled in the art will understand, there are two
separate pointers that are used for tracing through a DFA state
transition sequence: one for indicating the current state of the
DFA and one for indicating the current input value.

Although a state transition graph such as graph 20 provides
a convenient form of a DFA recognizer for a human being to

5

10

15

20

25

30

35

40

45

50

55

60

65

8

follow, it is not easily implemented by a computer program.
By contrast, FIG. 10 shows another (functionally equivalent)
form of a DFA recognizer that is easily implemented by a
computer program.

Using the conventional terminology within the field of
deterministic finite automatons, the state transition diagram
20 of FIG. 1B must be transformed into the state transition
table 30 of FIG. 10. The transformation from graph 20 into
table 30 implements step 70 of process 40 shown in FIG. 2.

As can be seen, every state in table 30 has all of its possible
input values appearing in sorted order. Because each state in
table 30 has its transition based on the success or failure of the
last input data, a binary search can easily be conducted in
table 30 to search for the node’s transition values. Successtul
binary search results in transition to the next state.

Creating the DFA Recognizer

FIG. 2 shows an exemplary process 40 for constructing a
DFA for recognizing the individual pixelcolumns of machine
generated character glyphs in a graphic image. Process 40
includes a subprocess 100 for collecting character glyph pix-
elcolumns of a font instance. Process 40 also includes sub-
process 50 for sorting the collected pixelcolumns subprocess
60 for merging the identical prefixes of character glyph pix-
elcolumns subprocess 70 for generating and storing a DFA
state transition table from the merged prefixes such that the
number of elements generated is substantially less than the
number of DFA states multiplied by the number of possible
pixel RGB values.

Collecting all Glyph Pixelcolumns Including Every Permu-
tation Overlapping Pixelcolumns

The table in FIG. 3 shows the first 34 of 28,762 Pixelcol-
umns after all the Pixelcolumns have been collected, yet
before they have been sorted. These are all of the non-over-
lapped Pixelcolumns of the following glyphs within the indi-
cated table rows:

Glyph
FIRST ROW LAST ROW CodePoint
00 04 !
05 10
11 16 #
17 23 $
24 33 %

FIG. 4 shows 34 DoubleOverlapping glyph pixelcolumns.
OverlapCode(1) and OverlapCode(2) form a corresponding
pair of DoubleOverlapping glyph pixelcolumns.

FIG. 5 shows 35 TripleOverlapping glyph pixelcolumns.
Most of these show corresponding triads of TripleOverlap-
ping OverlapCodes, such as OverlapCode(9, 10, 11). Over-
lapCode(18) and OverlapCode(20) do not show Overlap-
Code(19) because the middle glyph does not overlap both the
first glyph and the last glyph.

The table shown in FIG. 6 shows the first 34, of 28,762
Pixelcolumns after these Pixelcolumns have been sorted by
their RGB pixel values.

Each row of this table represents the identifying informa-
tion and numerical RGB values of the individual pixels of a
single vertical column of pixels within a character glyph. The
rows in this table and the pixels within each row are labeled
starting with zero as is the convention in the C++ program-
ming language. The PixelColumn pixel RGB values labeled
with 00 indicates the topmost pixel RGB value of the pixel-
column. Correspondingly the PixelColumn pixel RGB values
labeled with 10 indicates the bottom pixel of the glyph pix-
elcolumn.

US 9,171,207 B1

9

GlyphColumn indicates the relative column number within
the glyph (starting with 0) that this Pixelcolumn represents.

Glyphlndex is a subscript into the CodePoints column
indicating which character (CodePoint value) is represented
by this Pixelcolumn.

CodePoints can have one to three different values. If there
is only a single value, then this Pixelcolumn is not overlapped
by the Pixelcolumn of another glyph. (See the CodePoints
column of FIG. 3).

If there are two values, then this indicates that a first and
second glyph of a glyph pair overlap each other forming a
DoubleOverlapping Pixelcolumn. (See the CodePoints col-
umn of FIG. 4).

If'there are three values, then this indicates that a first glyph
overlaps a third glyph with a second glyph in-between form-
ing a TripleOverlapping Pixelcolumn. (See the CodePoints
column of FIG. 5).

The Pixels of these tables are labeled 00 to 10 indicating the
topmost pixel to the bottommost pixel of a Pixelcolumn with
eleven pixels.

FIG. 7 shows an exemplary process 100 for collecting
pixelcolumns of all character glyphs in the font instance
including every permutation of overlapping glyph pixelcol-
umn. Process 100 includes subprocess 200 for collecting non
overlapping glyph pixelcolumns, subprocess 300 for collect-
ing double overlapping glyph pixelcolumns, and subprocess
400 for collecting triple overlapping glyph pixelcolumns.

FIG. 55 shows an exemplary process 200 for collecting non
overlapping glyph pixelcolumns. Process 200 includes sub-
process 210 for generating all individual non-overlapping
glyphs, subprocess 220 for determining the dimensions and
placement of glyphs, and subprocess 230 for collecting the
non-overlapped glyph pixelcolumn data.

Generating all Individual Non-Overlapping Glyphs

Process 210 of FIG. 8. The preferred method is to generate
every character glyph in the font instance one-at-a-time to an
off-screen memory bitmap. In the Microsoft Windows®
operating system this is accomplished using the TextOut()
function.

Determine Dimensions and Placement of Glyphs

FIG. 55 shows exemplary process 220 for determining the
dimensions and placement of glyphs. Process 220 include
subprocess 222 for determining and storing the BoundingBox
coordinates of the glyphs, subprocess 224 for determining
and storing the GlyphPixelWidths, and subprocess 226 for
determining and storing the vertical extent of the Fontln-
stance.

Process 222 determines the minimal bounding box coor-
dinates of each glyph by locating the smallest rectangle that
contains all of its foreground pixels. The foreground pixels
are all pixels that are a different color than the single solid
background color. Each of these minimal bounding box rect-
angles are stored as an element of an array of glyph bounding
boxes.

The minimal bounding box coordinates of the glyph are
provided as {top, left, bottom, right} coordinates within the
off-screen bitmap. These coordinates are generally provided
relative to the top left corner of the off-screen bitmap.

Process 224 determines and stores the value of the pixel
width of each character glyph using the following exemplary
C++ expression:

GlyphPixelWidth[N]=(BoundingBox[V].right—
BoundingBox[NV].left)+1;
Process 226 determines the vertical extent of the font
instance by locating the minimum and maximum vertical
coordinates of all the glyphs within the array of glyph mini-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

mal bounding box rectangles. These vertical extent values are
stored in Maximum_Y and Minimum_Y. These values are
needed along with the minimal bounding box left and right
coordinates to determine the exact locations within the off-
screen bitmap where glyph pixelcolumn pixels must be col-
lected.

Another aspect of process 226 determines the value for the
FontPixelHeight by the following exemplary C++ expres-
sion:

FontPixelHeight=Maximum__Y-Minimum__ ¥+1;

Collecting the Non-Overlapped Glyph Pixelcolumn Data

Process 230 of FIG. 8 collects the non-overlapped glyph
pixelcolumn data. Now that we have determined the vertical
extent of the font instance we must generate the set of all
glyphs in the font instance again. We use the Minimum_Y and
Maximum_Y, vertical extent values determined in the pre-
ceding step to provide the vertical locations within the oft-
screen bitmap required to collect glyph pixelcolumn pixels.

We collect all of the pixels in the vertical extent to make
every glyph pixelcolumn have the same number of pixels.
This often includes background colored pixels within the
stored as glyph pixelcolumn pixels. Making all of the pixel-
columns the same height makes constructing and using the
DFA simpler.

Constructing the DFA is simpler because the DFA need not
handle cases where one pixelcolumn ends before another
pixelcolumn in the same DFA state transition sequence.
Using the DFA is simpler because it has fewer false positive
matches where little pieces of larger glyphs are mistaken for
whole smaller glyphs.

By using the vertical extent of the font instance along with
the horizontal extent of each individual glyph, we know the
precise placement of the set of pixels that must be collected.
All of the pixels are collected within the horizontal range of
BoundingBox|[N].left to BoundingBox[N].right and the ver-
tical range of Minimum_Y to Maximum_Y.

Each of these collected glyph pixelcolumns is associated
with its identifying data as shown as Identifier_Node 736 of
FIG. 44. This same structure is shown embedded within
DFA_Node 500 of FIG. 9.

Collect PixelColumn pixel RGB values using the glyph’s
horizontal BoundingBox left and right coordinates, and the
vertical extent of the Fontlnstance for the glyph’s top and
bottom, vertical coordinates.

Tterate through the vertical extent of the FontInstance from
top to bottom collecting all of the PixelColumn pixel RGB
values for a PixelColumn before proceeding to the next glyph
PixelColumn to the right. During this iteration Initialize this
glyph’s Identifier_Node as follows:

a) CodePoints[0]=The UTF-32 code point value of the
glyph.

b) Glyphlndex=0;

¢) GlyphColumn=The current relative glyph PixelColumn
number.

d) OverlapCode=0;

Collecting Double Overlapping Glyph Pixelcolumns

FIG. 10 shows an exemplary process 300 for collecting
double overlapping glyph pixelcolumns of font instance. Pro-
cess 300 includes subprocess 310 for generating all glyph
pairs, subprocess 320 for determining the minimal bounding
box rectangle of glyph pairs, subprocess 330 for collecting
PixelsBetween| | [] values, subprocess 340 for collecting
double overlapping glyph pixelcolumn data, and subprocess
350 for determining the double OverlapCode.

US 9,171,207 B1

11

Generate all Glyph Pairs

Process 310 of FIG. 10. As in the preceding section we
generate glyphs to an off-screen memory bitmap. The difter-
ence is that in this case we generate every permutation of pairs
of glyphs. As in the preceding section we generate and pro-
cess these glyphs one-at-a-time.
Determine BoundingBox Rectangle of Glyph Pair

Process 320 of FIG. 10. This works in the same way as
previously explained. We simply derive the {top, left, bottom,
right} pixel coordinates of the smallest rectangle within the
off-screen memory bitmap that includes of all of the pixels
that are a different color than the single solid background
color.
Collect PixelsBetween[]| [] Values

Process 330 of FIG. 10. We determine the actual number of
pixels between every pair of character glyphs by subtracting
the widths of the individual glyphs from the BoundingBox
width of the combined glyph pair:

PixelsBetween[CP1][CP2]=GlyphPairWidth—(Glyph-
PixelWidth[CP1]+GlyphPixelWidth[CP2]);

These values are stored in a two-dimensional array indexed
by CodePoint values, as shown in the above expression.
Collect Double Overlapping Pixelcolumn Data

Process 340 of FIG. 10. FIG. 11 shows how the horizontal
coordinates of the off-screen memory bitmap and the Glyph-
Column values for the two character glyphs relate to each
other. These coordinates are shown in units of pixels along the
top and left edges of FIG. 11, and immediately below each
character glyph.

The off-screen memory bitmap’s horizontal coordinates
are shown as numerical values {0-14} and its vertical coor-
dinates are shown as numerical values {0-12}. The first
glyph’s GlyphColumn values are shown immediately below
this glyph as numerical value {0-6}. The second glyph’s
GlyphColumn values are shown immediately below the sec-
ond glyph as values {0-4}.

The BoundingBox of the glyph pair is different than its
minimal BoundingBox because it includes some background
colored pixels in its vertical dimension: GlyphPair.top(0),
GlyphPair.left(3), GlyphPair.bottom(11), GlyphPair.right
(12).

Pixelcolumn 515 of FIG. 11 shows how the GlyphPair
BoundingBox column(8) relates to the first glyph’s Glyph-
Column(5) and the second glyph’s GlyphColumn(0).

A double overlapping pixelcolumn is defined as all of the
overlapping pixelcolumns of a pair of overlapping glyphs.
Whenever the PixelsBetween] | [| value of any pair of glyphs
is a negative number, then these glyphs must overlap each
other.

The location of the overlapping pixelcolumns within the
off-screen memory bitmap can be determined by the follow-
ing exemplary C++ expressions:

int FirstGlyphPairOverlapColumn=GlyphPair.left+
GlyphPixelWidth[CP1]+PixelsBetween[CP1]
[CP2];

int LastGlyphPairOverlapColumn=+FirstGlyph-
PairOverlapColumn+abs(PixelsBetween[CP1]
[cP2)-1;

As those skilled in the art will understand, the location of
the overlapping GlyphColumns of the individual glyphs can
be easily determined from the location of the overlapping
pixelcolumns within the off-screen bitmap along with the
GlyphPixelWidth[| of the individual glyphs and the Pixels-
Between| | [] values for the glyph pair.

20

30

40

50

55

60

12

The Exemplary C++ class 738 of FIG. 44 is filled in much
the same way as described previously in process 230 of FIG.
8. The difference is that we initialize Identifier Node::Node-
Points[0] and Identifier_Node::CodePoints[1], to the respec-
tive first and second glyph’s values. Also we initialize the
Identifier_Node::OverlapCode to as non-zero value as shown
below.

Determine Double OverlapCode

Process 350 of FIG. 10. The GlyphPixelWidth[| data and
the PixelBetween| | [] values derived in the preceding steps
are used to analytically determine which of the double Over-
lapCodes 1-8 applies to the overlapping pixelcolumns of this
glyph pair.

FIG. 12 provides a C++ source-code function for determin-
ing the OverlapCode value for each glyph pixelcolumn within
every double overlapping glyph pair, or triple overlapping
glyph triad.

Collecting Triple Overlapping Glyph Pixelcolumns

FIG. 13 shows an exemplary process 400 for collecting
triple overlapping glyph pixelcolumns of font instance. Pro-
cess 400 includes subprocess 410 for generating triple over-
lapping glyph triads, subprocess 420 for determining the
minimal bounding box rectangle of glyph triads, subprocess
430 for collecting triple overlapping pixelcolumn data, sub-
process 440 for determining the triple OverlapCode.

A triple overlapping pixelcolumn is defined as the overlap-
ping pixelcolumns where a first character glyph overlaps a
third character glyph with a second character glyph in-be-
tween. Most often this also includes pixelcolumns of the
second character glyph.

Generate all Triple Overlapping Glyph Triads

Process 410 of FIG. 13. We use the previously determined
PixelsBetween| | [] values to determine whether or not a
glyph triad must be generated. The following C++ snippet
derives the pixels between a first character glyph and a third
character glyph with a second character glyph in-between:

int PixelsBetweenCP1__CP3=+PixelsBetween[CP1]
[CP21+GlyphPixelWidth[CP2]+PixelsBetween
[CP2j[CP3];

A negative value for PixelsBetweenCP1_CP3 indicates
that the permutation of three character glyphs derives triple
overlapping glyph pixelcolumns.

Determine Minimal BoundingBox Rectangle of Glyph Triad

Process 420 of FIG. 13. This works in the same way as
previously explained. We simply derive the {top, left, bottom,
right} pixel coordinates of the smallest rectangle within the
off-screen memory bitmap that includes of all of the pixels
that are a different color than the single solid background
color.

Collect Triple Overlapping Pixelcolumn Data

Process 430 of FIG. 13. Pixelcolumn 520 on FI1G. 14 shows
how the BoundingBox column(9) relates to the first glyph’s
GlyphColumn(6) and the third glyph’s GlyphColumn(0).
The second glyph 525 has a GlyphColumn(0) that is not
included in this overlap. Because this the second glyph is not
included in this overlap, its identifying information is not
stored in the collected glyph pixelcolumns.

As those skilled in the art will understand, the location of
the overlapping GlyphColumns can be easily determined
from the location of the BoundingBox columns within the
off-screen bitmap along with the GlyphPixel Width][| of the
individual glyphs and the PixelsBetween| | [] values for each
of the two pairs of adjacent glyphs.

The location of the overlapping columns within the glyph
triad bounding box is provided by the following exemplary
C++ expressions:

US 9,171,207 B1

13

int FirstGlyphTriadOverlapColumn=GlyphTriad.left+
GlyphPixelWidth[CP1]+PixelsBetweenCP1__
CP3; (shown above)

int LastGlyphTriadOverlapColumn=FirstGlyphTriad
OverlapColumn+abs(PixelsBetweenCP1__CP3)—
L
Determine Triple OverlapCode

Process 440 of FIG. 13. FIG. 12 provides a C++ source-
code function for determining the OverlapCode value for
each glyph within every double overlapping glyph pair, or
triple overlapping glyph triad.

Sort the Collected Pixelcolumns by Pixel RGB Values

Process 50 of FIG. 2. The collected DFA_Nodes are sorted
by their DFA_Node::Pixel RGB values. The glyph pixelcol-
umn pixel RGB values are stored from their topmost pixel to
their bottom most pixel such that the topmost pixel has the
highest sort priority.

The following examples all relate to the same fontinstance
of the Microsoft Windows® operating system:

Typeface Name: Times New Roman

Font Smoothing: ClearType®

Font Style: {Bold, Italic}

Point Size: 8

Foreground Color: 000000 (Black)

Background Color: FFFFFF (white)

Merge Identical Prefixes of Glyph Pixelcolumns Together

Process 60 of FIG. 2. The first ten pixels (columns 00
through 09) of the Pixelcolumns shown in rows 00 to 16 of
FIG. 6 form the identical prefixes that are merged together in
the DFA states [000001] shown in FIG. 16 and DFA states
[058316] to [058324] shown in TABLE-01 of FIG. 17.

By merging these pixels together into the DFA states
[000001] of FIG. 16 and DFA states [058316] to [058324] of
TABLE-01 of FIG. 16, the DFA recognizer can simulta-
neously match the identical prefixes of all 17 pixelcolumns.
This reduces memory requirements and processing time.
Generate and Store the DFA State Transition Table from the
Merged Prefixes Such that the Number of Elements Gener-
ated is Substantially Less than the Number of DFA States
Multipled by the Number of Possible Pixel RGB Values

Process 70 of FIG. 2. The correspondence between the
collected and sorted glyph Pixelcolumns shown in Rows 00
through 16 of FIG. 6 and DFA states [000001] of FIG. 16 and
DFA states [058316] through 058347] of FIG. 17. provides a
concrete example of exactly how the sorted list of Pixelcol-
umns are translated into DFA states.

The correspondence can be mapped using the pixel RGB
values of the collected and sorted glyph Pixelcolumns shown
in FIG. 6 and the pixel RGB values in the generated DFA
nodes shown in FIG. 16 and FIG. 17.

Rows 0 though 16 of FIG. 6 are translated into DFA states
[000001] shown in FIG. 16 and DFA states [058316] to
[058347] shown in TABLE-01 and TABLE-02 of FIG. 17.

The set of pixels shown as last pixel of each pixelcolumn
shown in column 10 of rows 00 through 16 of FIG. 6 have the
same pixel RGB values as the set of pixels shown in DFA
states [058325] to [058330] of TABLE-1 of FIG. 17.

The identical RGB values of the column 10 of rows 0
through 16 of FIG. 6 are merged together to become the DFA
states [058325] to [058330] of TABLE-1 of FIG. 17.

Because we had to merge together some of the pixel RGB
values of the last pixel in the pixelcolumn indicates that some
different pixelcolumns have identical bitmaps.

25

40

45

50

60

14

The DFA states [058325] to [058330] of FIG. 17 point to
these sets of ambiguous matches in their own Next and Offset
fields. Whenever the Offset field is larger than zero and the
ActionCode is _RECOGNIZE, the Next field points to the
first identifier and the Next+Offset fields point to the last
Identifier of multiple pixelcolumns that have identical bit-
maps.

Two or more pixelcolumns can have identical bitmaps
either by coincidence or because they comprise the pixelcol-
umns of overlapping glyphs.

The DFA_RECOGNIZE node [058325] shown on
TABLE-01 of FIG. 17 points to a pair of DFA Identifier
nodes: [058346] and [058347] shown on TABLE-02 of FIG.
17. These Identifier nodes specify a pair of corresponding
overlapping pixelcolumns.

The DFA_RECOGNIZE node [058329] shown on
TABLE-01 of FIG. 17 points to eight DFA Identifier nodes
beginning at [058332] and ending at [058339] shown on
TABLE-02 of FIG. 17. These Identifier nodes specity four
different pairs of corresponding overlapping pixelcolumns
that coincidentally have identical bitmaps to each other.

The DFA states corresponding to row 16 of FIG. 6 (the 4th
glyph column of the “$” character) are [000001], [058316] to
[058324] and [058330] and the identifier data DFA node of
[058331].

Each DFA state beginning with the start state represents the
pixel RGB values proceeding from the topmost pixel of the
Glyph Pixelcolumn, to the bottommost pixel of the Glyph
Pixelcolumn.

Item 540 of FIG. 16 shows the location and length of the
DFA start state. Item 545 of FIG. 16 is the DFA start state.
Since this state only includes pixel RGB values of “aaaaaa”
and “fftfff”, this means that the topmost pixel of every glyph
pixelcolumn in the fontinstance must be either WHITE(fftftY)
or GRAY (aaaaaa) in color.

TABLE-01 of FIG. 17 shows the DFA states corresponding
to the subsequent pixels in every pixelcolumn that has already
matched the topmost pixel RGB value of “aaaaaa”.

The table shown in FIG. 6 shows the first 34 Pixelcolumns
after the Pixelcolumn data has been sorted by Pixelcolumn
pixel RGB values. The column headings of the table shown in
FIG. 16 are provided in TABLE-01 of FIG. 17.

The table of FIG. 16 and TABLE-01 and TABLE-02 of
FIG. 17 show the first seventy states, and the last 32 states of
a DFA with 58,347 states.

Item 540 of FIG. 16 shows the DFA start state. Item, 545 of
FIG. 16 shows the list of topmost pixel RGB values for all
pixelcolumns in the font instance. There are only two pixel
values in this list “aaaaaa” and “ffffft”. This indicates that the
topmost pixel of every Pixelcolumn in the fontinstance is
either a shade of gray “aaaaaa” or white “ffffff”.

Item 550 of FIG. 16 is transitioned to from the start state if
the first input pixel is (ffftff) white. The 68 pixel RGB values
in this state are searched using binary search using the second
input pixel if the first input pixel matches (ffffff) white. The
second input pixel would be the pixel immediately below the
first input pixel in the graphic image.

When a pixel is successfully matched the DFA transitions
to its Next state and then uses binary search to search the
length of this state (from Next to Next+Offset) using the next
input pixel. It continues to do this until it either fails to match,
or reaches its DFA accept state.

US 9,171,207 B1

15
Ttem 565 of FIG. 20 shows the TripleOverlapping Glyph
Pixelcolumn of:
Times New Roman(NBI--8)(000000_FFFFFF)---->ftf
Here is what it looks like in the DFA recognize state.

Glyph
DFA Glyph Column Overlap
State CodePoint[3] Index Number Code
006811 ffj 0 6 9
006812 ffj 1 3 10
006813 ffj 2 0 11

OverlapCode Values Explained

OverlapCodes specify the numerous different ways that
glyphs can overlap each other. OverlapCodes are used as part
of'the process of combining together glyph pixelcolumns into
whole glyphs. OverlapCode(0) indicates a Glyph Pixelcol-
umn that does not overlap any other glyph Pixelcolumns.

OverlapCodes 1 through 8 indicate the ways that the Pix-
elcolumns of a pair of glyphs can overlap each other. Over-
lapCodes 9 through 26 indicate the ways that the Pixelcol-
umns of three glyphs can overlap each other.

FIG. 21 though FIG. 25 show examples of these different
kinds of overlapping glyph Pixelcolumns. The portions of the
glyphs pointed to by items 600, 605, 610, 615, 620, 630, 635,
640, 645, 650 indicate the Pixelcolumn pixels corresponding
to their respective OverlapCodes.

The table shown on FIG. 26 provides details about how the
set of OverlapCodes relate to the glyph images shown on FIG.
21 through FIG. 25. The set of corresponding OverlapCodes
is shown on each row of this table. For example the table row
indicated by FIG. 22 and FIGURE ITEM(620) show that
OverlapCode(7) corresponds to OverlapCode(8).

The TripleOverlap OverlapCodes shown on the table of
FIG. 26 as pertaining to FIGURE ITEM(625) through FIG-
URE ITEM(650) show the corresponding TripleOverlap
OverlapCodes on each row of this table. Because the middle
glyph of a TripleOverlap is not always involved in this Trip-
leOverlap, its pixelcolumns and corresponding OverlapCode
is not always required.

When the glyph pixelcolumns are validated to eliminate
erroneous matches, all of the corresponding OverlapCodes
must be present.

The OverlapCodes for FIG. 24 and FIG. 25 have been
derived from the following fontinstance of the Microsoft
Windows® operating system:

Typeface Name: Times New Roman

Font Smoothing: ClearType®

Font Style: {Bold, Italic}

Point Size: 8

Foreground Color: 000000 (Black)

Background Color: FFFFFF (white)

Times New Roman(CBI--8)(000000_FFFFFF)---->’1j
The glyphs shown on FIG. 24 have been modified to show the
boundaries of the individual glyphs. The glyphs shown on
FIG. 27 are shown in their original unmodified form. FIG. 28
shows these same three glyphs as non-overlapping.

Times New Roman(CBI--8)(000000_FFFFFF)---->’jj
FIG. 25 is a modified form of FIG. 32 showing the boundaries
of the individual glyphs. FIG. 33 shows these same three
glyphs as non-overlapping. The OverlapCodes shown above
provide all of the ways that Glyph Pixelcolumns can overlap
each other that are currently known.

FIG. 4 shows several sets of corresponding pairs of double
overlap OverlapCodes: OverlapCode(1) and OverlapCode
(2). FIG. 5 shows corresponding sets of triple overlap Over-

10

15

20

25

30

35

40

45

50

55

60

65

16

lapCodes. Generally this involves OverlapCode triads. One
exception is shown as OverlapCode(18) and OverlapCode
(20). The OverlapCode(19) is missing because the second
glyph of the triple overlap does not overlap with the portion of
the first glyph that overlaps the third glyph. Item 640 of FI1G.
23 and pixelcolumn 520 of FIG. 14 shows other examples of
this same thing.

PixelColumnlL ist Class Explained

The exemplary C++ class PixelColumnl ist 739 of FIG. 44
is used for collecting the glyph PixelColumn data in steps 220
of FIG. 8, 340 of FIGS. 10, and 430 of FIG. 13. The glyph
PixelColumn pixel RGB values are stored in PixelColumn::
Pixels. These pixels are stored beginning with the topmost
pixel and proceeding down to the bottom most pixel. The
PixelColumn Identifier data is stored in the Identifier Node
736 of FIG. 44.

The exemplary C++ struct Identifier_Node 736 of FI1G. 44
has four members: CodePoints| |, Glyphlndex, GlyphCol-
umn, and OverlapCode.

Identifier_Node Structure Explained

CodePoints[3], this three element array provides the UTF-
32 codepoint value of the specific character that has been
matched by the DFA state transition sequence. This array has
values for one of the following:

a) Single non overlapped glyph.

b) Pair of double overlapping glyphs.

¢) Triad of triple overlapping glyphs.

Glyphlndex, this provides an index into the above array of
CodePoints that indicates which character is represented by
this DFA Node. We must have three different possible values
stored in the CodePoints field to indicate the sequence of up to
three glyphs that overlap each other.

GlyphColumn, this provides the relative pixelcolumn
number within the matched glyph that the matched DFA
sequence of pixels represents. This value ranges from zero to
glyph pixel width-1;

OverlapCode, A numerical value that indicates all of the
currently known ways that two or three glyph pixelcolumns
can overlap each other. Additional details are provided in the
section entitled OVERLAPCODE VALUES EXPLAINED.
DFA_Node Structure Explained

FIG. 9 shows an exemplary C++ source code structure 500.
This structure is named DFA_Node. An array of these struc-
tures defines a state transition table. The two structs within the
union define two different types of DFA nodes:

1) The State Transition Node, is used to define the DFA
state transition sequence that matches glyph pixelcolumn
pixel RGB values.

2) The Identifier Node, is used to provide the identifying
details regarding exactly which glyph pixelcolumn was
matched, and is exactly the same as the Identifier_Node
described above in IDENTIFIER_NODE STRUCTURE
EXPLAINED.

The State Transition Node has Four Fields:

1) The DFA_Node::Pixel field indicates one pixel of a list
of'one or more pixel RGB values that are to be searched using
binary search.

2-3) The DFA_Node::Next and DFA_Node::Offset fields
are used to connect one DFA node to a list of one or more
other DFA nodes within the state transition table array of
DFA_Node structures. The DFA_Node::Next field is an index
into the state transition table array. The DFA_Node::Offset
field is added to the DFA_Node::Next field to provide the
index of the last node in the list of DFA nodes.

US 9,171,207 B1

17

4) The ActionCode field defines the specific action to be
taken by the DFA if the input pixel RGB value matches the
current DFA_Node::Pixel value. There are two ActionCode
values:

_BSEARCH indicates that the list DFA_Node::Pixel val-
ues defined by the current DFA_Node::Next and DFA_N-
ode::Offset fields is to be binary searched for a match with the
current input pixel RGB value.

_RECOGNIZE indicates that the list defined by the current
DFA node’s DFA_Node::Next and DFA_Node::Offset fields
provides the DFA Identifier nodes that were matched in the
DFA state transition sequence. When the _RECOGNIZE
node has an Offset value greater than zero, this indicates
matching multiple glyph pixelcolumns having identical bit-
maps.

The DFA_Node:: ActionCode determines the action to be
taken by the DFA recognizer if the current DFA node matches
the current input pixel RGB value. There are two ActionCode
values: _BSEARCH and _RECOGNIZE.

The value of _BSEARCH indicates that the list of DFA
nodes specified by the DFA_Node::Next and DFA_Node::
Offset fields are to have their DFA_Node::Pixel RGB values
searched using the current input pixel from the input image.

The DFA_Node::ActionCode value of _RECOGNIZE
indicates that the list of DFA nodes specified by the DFA_N-
ode::Next and DFA_Node::Offset fields provides the DFA
Identifier Nodes that have been matched by the state transi-
tion sequence.

Using the DFA to Recognize Character Glyphs in a Graphic
Image

Process 700 of FIG. 34. All of the pixels of a graphic image
are processed using a DFA recognizer. This DFA recognizer
is used to match the RGB pixel patterns of individual glyph
pixelcolumns. A glyph pixelcolumn is a single vertical col-
umn of pixel RGB values that is as tall as the vertical extent of
the fontinstance. These individual glyph pixelcolumns are
combined together to form whole glyphs.

Each of the image pixels is tested against the DFA start
state, and if it matches, the next image pixel immediately
below the current image pixel is processed by the next DFA
state. This continues until either the DFA fails to match, or all
the pixels in the glyph pixelcolumn match. When all the
pixels in a glyph pixelcolumn match, the glyph pixelcolumn
identifier data is reported by the DFA recognizer.

The C++ source-code listing 500 of FIG. 9 shows the
DFA_Node data structure which provides the details of the
implementation of a single DFA node. See the section entitled
DFA_NODE STRUCTURE EXPLAINED for the details of
how the individual fields within this structure are used.

The DFA itself is implemented as a single dimensional
array of these DFA_Node structures. The input image is
stored as a two-dimensional array of pixel RGB values.

The list of Identifier nodes pointed to by the DFA_Node::
Next and DFA_Node::Offset fields includes every glyph pix-
elcolumn within the fontinstance that has an identical set of
pixel RGB values.

FIG. 34 shows an exemplary process 700 to recognize
character glyphs in a graphic image. Process 700 is shown at
a high level (abstract or general) view. Process 700 includes
subprocess 705 for proceeding through the input image, sub-
process 800 for processing each image pixel using a DFA
recognizer, subprocess 710 for storing the recognized glyph
pixelcolumns and subprocess 745 for combining together
recognized glyph pixelcolumns into correctly matched whole
glyphs.

Subprocess 705 proceeds through the input image from top
leftmost pixel to bottom rightmost pixel. It proceeds through

15

20

25

30

40

45

65

18

the input image processing a row of pixels from left to right,
before moving down to the left most pixel of the next pixel
row. Since this is the same order that one would read a page
from a book, this is called “book read” order.

Subprocess 800 uses the DFA recognizer to determine if
the input image pixel is the topmost pixel of a glyph pixel-
column. Subprocess 800 reports any matching glyph pixel-
columns.

Subprocess 710 stores the matched glyph pixelcolumns
reported in subprocess 800. These matched glyph pixelcol-
umns are stored in the C++ struct 510, named SelectedN-
odesList of FIG. 9. The details of this data structure and use
are elaborated in its own section entitled: SELECTEDN-
ODESLIST CLASS EXPLAINED.

Subprocess 745 combines these stored glyph pixelcolumns
together to form correctly matched whole glyphs. This will be
further elaborated in the section entitled COMBINING
GLYPH PIXELCOLUMNS INTO WHOLE GLYPHS.

FIG. 35 shows subprocess 800 expanded into its detailed
steps. FIG. 36 shows this same essential process implemented
as C++ source-code. Step 810 gets the next image pixel and
sets the current DFA state to its start state. Step 820 deter-
mines the next DFA action based on the current DFA state.
Step 830 reports the matching glyph pixelcolumn.

Step 840 uses binary search to find the current input pixel
in the sorted list of DFA_Node::Pixel values pointed to by
DFA[CurrentState] Next and DFA[CurrentState].Offset. If
the BinarySearch() function finds a match, it returns the next
DFA state in the DFA state transition sequence. This function
returns zero if it fails to find a match.

Step 850 determines whether or not the binary search suc-
ceeded, a non-zero value indicates the subscript of the DFA
node that matched the input pixel. A value of zero indicates
failure to match. When the binary search fails to match, the
800 process exits.

When the binary search of step 840 succeeds Step 860
obtains the next lower pixel RGB value from the input image
and transitions to the next DFA state. It then loops back up to
step 820.

Next we will provide two complete concrete examples of
using the DFA to recognize a glyph pixelcolumn. These
examples are provided from a fully operational DFA recog-
nizer.

The first example will show how the DFA recognizes the
fourth pixelcolumn of the “$” DollarSign glyph. The second
example shows how the DFA is used to recognize an overlap-
ping pixelcolumn of the double overlapping glyph pair $].
These two examples are based on the following fontinstance
of the Microsoft Windows® operating system:

Typeface Name: Times New Roman

Font Smoothing: ClearType®

Font Style: {Bold, Italic}

Point Size: 8

Foreground Color: 000000 (Black)

Background Color: FFFFFF (white)

These two examples are derived from the portion of the
DFA recognizer shown in FIG. 16 and FIG. 17. FIG. 16 shows
the first seventy-one states of the DFA. TABLE-01 and
TABLE-02 of FIG. 17 show the last thirty-two states of the
DFA.

Example of DFA Recognizing 4th Pixelcolumn of $

FIG. 37 shows the image of a “$” glyph, item 720 is the
(zero based) fourth pixelcolumn of this glyph. This fourth
glyph pixelcolumn is shown at image pixelcolumn ten.

FIG. 38 shows a trace of the DFA state transitions for the
recognition of the fourth pixelcolumn of the “$” DollarSign
character glyph. The glyph pixelcolumn pixel RGB values are

US 9,171,207 B1

19
shown in the top-to-bottom order that they are recognized.
The _RECOGNIZE state shown as state [058330] points to a
single DFA identifier node at DFA state [058331].

Because the DFA recognizer proceeds beginning with the
top leftmost pixel of the graphic image and moves through a
row of pixels before moving to the next lower row it always
“sees” the topmost pixel of the first pixelcolumn of the glyph,
first. This is the same order described in the prior paragraph.
FIG. 39, FIG. 40, FIG. 41 show the DFA execution trace of
recognizing the whole “$” DollarSign glyph.

Example of DFA Recognizing an Overlapping Pixelcolumn
of §]

As a specific concrete example we will examine recogniz-
ing an overlapping pixelcolumn of the double overlapping
glyph pair: $]. A double overlapping pixelcolumn, means that
it is an overlapping pixelcolumn of a pair of glyphs that
overlap each other.

This overlapping pixelcolumn is shown as the 10th pixel-
column of the image indicated by 725 of FIG. 42. This pix-
elcolumn is comprised of the 4th pixelcolumn of “$”” and the
Oth pixelcolumn of “]”.

The DFA start state indicated by item 540 of FIG. 16 uses
its Next and Offset fields to point to the first sorted list of pixel
RGB values. When this list is binary searched for the input
pixel RGB value of “aaaaaa” a match occurs at DFA state
[000001]. This state points to the single DFA node [058316].

The table shown in FIG. 43 provides a dynamic execution
trace of the DFA recognition of this pixelcolumn. FIG. 16 and
FIG. 17 shows all of the states in the involved in the dynamic
execution trace as they appear in the actual static DFA.

The hexadecimal values shown in the Pixel column of FIG.
43 in states [000001] through [058329] show all of the pixel
RGB values of this pixelcolumn from the top pixel to the
bottom pixel.

The table provided by FIG. 43 shows that the DFA states
[058332] to [058339] indicate that this pixelcolumn has an
identical bitmap to the pixelcolumns of four different Double-
Overlapping glyph pairs:
$) 8] $_8y
Fontlnstance Explained

A fontinstance is the specific combination of font proper-
ties that are used to render character glyphs to an image:

a) Typeface name

b) Font smoothing: {ClearType, Standard, None}
b) Font style: {Bold, Italic, Underline}

¢) Point size

d) Foreground color

e) Background color

A monochrome fontinstance is a fontinstance with a Font
smoothing value of “None”. With monochrome fontinstances
colors are limited to the foreground and the background color.
When a fontinstance is dithered (anti-aliased) it uses addi-
tional colors besides the foreground and background colors to
make the edges of the character glyphs seem smoother to the
human eye.

SelectedNodesList Class Explained

When the DFA recognizer matches glyph pixelcolumns, it
stores the DFA identifier nodes corresponding to these
matches in a list. This list includes all of the glyph pixelcol-
umns that have identical bitmaps to each other. The DFA also
stores the vertical and horizontal pixel coordinates where
these matches occurred within the processed graphic image.
The C++ struct 505 shown on FIG. 9 named SelectedNodes
shows how this list of DFA Identifier nodes and image coor-
dinates could be stored.

10

15

20

25

30

35

40

45

50

55

60

65

20

SelectedNodes 505 of FIG. 9 includes fields:

a) ImageRow, this is vertical coordinate location within the
input image of the bottom of the glyph pixelcolumn that was
matched. The vertical coordinate location of the top pixel of
the glyph pixelcolumn can be derived by the following:

TopRow=Bottom Row-FontPixelHeight+1;

b) ImageColumn is the horizontal coordinate location
within the image of the glyph pixelcolumn that was matched.

¢) NodeList is a list of all DFA Identifier nodes that the
DFA recognizer matched. This includes all glyph pixelcol-
umns that have identical bitmaps to each other.

The C++ class 510 of FIG. 9 named SelectedNodesList is
a list of SelectedNodes. This list will be used in the section
entitled: COMBINING GLYPH PIXELCOLUMNS INTO
WHOLE GLYPHS
MatchedGlyphList Class Explained

The exemplary C++ class 740 of FIG. 44 named
MatchedGlyphList forms the final output from process 700 of
FIG. 34. This is a list of all the glyphs that were matched (in
BookRead order) from the input graphic image. Elements of
this list are comprised of C++ struct 735 of FIG. 44 named
MatchedGlyph. This data structure includes both the UTF-32
codepoint corresponding to the glyph, as well as the Bound-
ingBox coordinates locating exactly where this match
occurred within the input graphic image.

Combining Together Recognized Glyph Pixelcolumns into
Correctly Matched Whole Glyphs

Process 745 of FIG. 34. After the DFA has been executed
and it has returned a list of all of the glyph pixelcolumns that
were recognized within the input image additional post-pro-
cessing validation is required. This additional processing
eliminates all glyph pixelcolumns that have been erroneously
matched and combines the glyph pixelcolumns together to
form correctly matched whole glyphs.

Glyph pixelcolumns are erroneously matched because it is
often the case that the pixelcolumns of one glyph coinciden-
tally have identical image bitmaps to the pixelcolumns of
other glyphs. Another issue arises when a sequence of pixel-
columns that forms a whole glyph can be derived from a
portion of a larger glyph. When either of these problems arise
there are numerous discrepancies and inconsistencies that can
be detected such that all of these erroneously matched glyph
pixelcolumns and glyphs can be eliminated.

FIG. 45 shows an exemplary process 745 for combining
glyph pixelcolumns into correctly matched whole glyphs.
Process 745 includes a subprocess 850 for validating recog-
nized glyph pixelcolumns, and subprocess 900 for validating
whole glyphs against each other.

The input to process 745 is exemplary C++ class Selected-
NodesList 510 of FIG. 9, and the output from process 745 is
exemplary C++ class MatchedGlyphList 740 of FIG. 44.
Both SelectedNodesList, and MatchedGlyphList are
described in their own sections entitled: SELECTEDN-
ODESLIST CLASS EXPLAINED and MATCHEDGLYPH-
LIST CLASS EXPLAINED.

FIG. 46 shows an exemplary process 850 for pixelcolumn
validation. Process 850 involves examining the individual
DFA_Nodes referenced by values stored within the NodeList
member of the SelectedNodes structure 505 of FIG. 9. Pro-
cess 850 includes a subprocess 860 for eliminating pixelcol-
umns that do not form whole glyphs, and subprocess 870 for
eliminating pixelcolumns lacking required corresponding
OverlapCodes.

FIG. 47 shows an exemplary process 900 for validating
whole glyphs against each other. Process 900 involves iterat-
ing through the MatchedGlyphlist and comparing

US 9,171,207 B1

21

MatchedGlyph elements to each other. Process 900 includes
a subprocess 910 for correcting erroneous glyph order, sub-
process 920 for eliminating erroneous horizontal substring
glyphs, subprocess 930 for eliminating erroneous invisible
glyph boundary glyphs, subprocess 940 for PixelsBetween] |
[1 glyphs validation, and subprocess 950 for eliminating
erroneous vertical substring glyphs,

Eliminating Pixelcolumns that do not Form Whole Glyphs

Subprocess 860 of process 850 shown on FIG. 46 removes
all recognized glyph pixelcolumns that do have their required
complete set of sequential glyph column numbers, (from zero
to GlyphPixelWidth-1).

The GlyphPixelWidth table of FIG. 48 provides the values
needed to determine which CodePoints of the DFA Recogni-
tion Trace0l table have all of their required pixelcolumns.
DFA Recognition Trace02 table provided on FIG. 50 shows
the remaining glyph pixelcolumns after this validation has
occurred.

Exemplary C++ function 750 of FIG. 49, named Selected-
NodesList::SelectWholeGlyphs() shows how subprocess
860 might be implemented. When GlyphColumn(0) for the
CodePoint has been seen at line_number(16) MatchNextPix-
elColumns() is invoked at line_number(21) to look for the
DFA Identifier nodes corresponding to the remaining Glyph-
Column numbers for this CodePoint. The MatchNextPixel-
Columns() function is nearly identical to the SelectWholeG-
lyphs() function, except that it looks for the complete set of
subsequent GlyphColumn values beyond GlyphColumn(0).

The Subprocess 860 also shown on FIG. 56, which
includes subprocess 862 of F1G. 57. Subprocess 862 includes
step 864 which corresponds to line_number(16) mentioned
above, and step 866 which corresponds to line_number(21)
also mentioned above.

Eliminate Pixelcolumns Lacking Required Corresponding
OverlapCodes

Subprocess 870 of process 850 shown on FIG. 46 removes
all glyph pixelcolumn nodes that do not have a corresponding
overlap pair for DoubleOverlap OverlapCodes. Subprocess
870 also removes all glyph pixelcolumn nodes that do not
have a corresponding overlap triad for TripleOverlap Over-
lapCodes.

The table shown on FIG. 26 provides the list of correspond-
ing OverlapCodes on each of'its rows. For the DoubleOverlap
OverlapCodes of FIGURE ITEM(605) through FIGURE
ITEM (620) of this table, both OverlapCodes are always
required. As an example both OverlapCode(7) and Overlap-
Code(8) are always required.

The TripleOverlap OverlapCodes shown on the table of
FIG. 26 as FIGURE ITEM(625) through FIGURE ITEM
(650) of this table also require either all three OverlapCodes,
or the GlyphIndex(0) and the Glyphlndex(2) OverlapCodes.
The OverlapCode validation process first looks for all three
OverlapCodes, and failing this it looks for the GlyphIndex(0)
and the Glyphlndex(2) OverlapCodes.

FIG. 50 shows the list of glyph pixelcolumns before the
validation of subprocess 870, and FIG. 51 shows this list of
glyph pixelcolumns after glyph pixelcolumns lacking their
corresponding OverlapCodes have been removed.

Another measure of OverlapCode validation involves the
fact that only one set of corresponding OverlapCodes is
allowed at each glyph PixelColumn. This is an additional
validation criteria that could be used in PixelColumn valida-
tion. This criteria is not currently implemented in the working
prototype.

OverlapCode Validation proceeds through the NodeList
member of SelectedNodesList elements making sure that
adjacent DFA_Nodes within the NodeList have correspond-

10

15

20

25

30

35

40

45

50

55

60

65

22

ing OverlapCodes. The Corresponding OverlapCodes are
adjacent because the PixelColumn sort criteria includes Over-
lapCode as secondary sort criteria after the primary sort cri-
teria of PixelColumn pixel RGB values. The simplest way to
verify that OverlapCodes have their corresponding Overlap-
Code, is to make a table that is indexed by the first Overlap-
Code that looks up the expected OverlapCode. We require an
extra table for the case of TripleOverlap OverlapCodes that
validate without their second glyph OverlapCode.

Correct Erroneous Glyph Order

Subprocess 910 of process 900 shown on FIG. 47 detects
when glyphs within MatchedGlyphList 740 of FIG. 44 are
out-of-order relative to the order that they were generated,
and swaps these glyphs thus placing them in the correct order.

Whenever a second glyph more than totally overlaps a first
glyph, some of the pixelcolumns of this second glyph precede
the pixelcolumns of the first glyph, when the image is pro-
cessed in BookRead order. When these glyph pixelcolumns
are pieced back together, they are still in the reverse order
relative the order that they were generated. The DFA recog-
nizer is constructed to keep track of the cases when this can
occur. The DFA indicates this using special OverlapCodes.

One example of this is shown as pixelcolumns 620 of FI1G.
22. In this case the DoubleOverlapping glyph pixelcolumns
include an Apostrophe that is more than totally overlapped by
a lowercase “f”. The Double Overlap OverlapCodes{7,8}
indicate that that these pairs of glyphs are recognized out-of-
order.

The other known example of glyph pixelcolumns being
recognized out-of-order is shown as pixelcolumns 640 in
FIG. 23. In this case the corresponding triad of TripleOverlap
OverlapCodes {18, 19, 20}. In this case the third glyph’s
pixelcolumns are recognized before the second glyph’s pix-
elcolumns.

We process adjacent pairs within the MatchedGlyphList
using three factors that indicate out-of-order glyphs:

1) The first glyph more than totally overlaps the second glyph,
as determined their respective BoundingBox coordinates.
When glyphs are out-of-order, this is actually the case of the
second glyph more than totally overlapping the first glyph.
2) The first glyph and second glyph have OverlapCodes that
indicate the glyphs are out-of-order.

3) The glyph pair fails PixelsBetween] | [| Validation with the
current order, and passes PixelsBetween] | [| Validation when
the order is swapped.

Eliminate Erroneous Horizontal Substring Glyphs

Subprocess 920 of process 900 shown on FIG. 47 elimi-
nates glyphs in the MatchedGlyphlL.ist that were erroneously
matched because the graphic image of these erroneously
matched glyphs is embedded within the image of a larger
glyph. This occurs when the middle pixelcolumns of a wider
glyph are identical to, and in the same order as all of the
pixelcolumns of a narrower glyph. In this case the narrower
glyph is said to form a substring of the wider glyph.

TABLE 222 of FIG. 52 shows several erroneously matched
substring glyphs that occur within IMAGE 111 of FIG. 52.
Only the first, third, and sixth glyphs are correctly matched:
{1, *, A}. The second, fourth, fifth, and seventh glyphs are
erroneously matched apostrophe and period characters. The
table shown on FIG. 53 provides the individual pixelcolumns
associated with table 222 of FIG. 52.

There are three factors that are used to determine whether
or not a glyph is an erroneous horizontal substring glyph:

1) The glyph is totally (or more than totally) overlapped by
another glyph.

2) The glyph does not have OverlapCodes consistent with this
total overlap, often there are two OverlapCode(0) Overlap-

US 9,171,207 B1

23

Codes (indicating non-overlapping pixelcolumns) in the
same glyph pixelcolumn as shown FIG. 53.

3) The actual pixels between the glyphs determined by their
BoundingBox coordinates is not consistent with their
expected values that are stored in the PixelsBetween| | [|
array.

The process proceeds through the MatchedGlyphList and
examines all of the glyphs that are totally (or more than
totally) overlapped by another glyph. This process removes
the minimum number of glyphs required until PixelsBe-
tween] | [] validation passes for all of the glyphs involved in
the total (or more than total) overlap.

There is one exception to the above processing. Some
Fontlnstances have glyphs that are identical to each other. In
this case both glyphs may be valid. Sometimes the distinction
can be made between identical glyphs because their respec-
tive PixelsBetween|[| [] values are different. The currently
preferred embodiment would simply report one of these
ambiguous glyphs. This preferred embodiment would report
all of the glyph ambiguity for the Fontlnstance to the user
during the DFA build process 40 shown on FIG. 2.
Eliminate Erroneous Invisible Glyph Boundary Glyphs

Subprocess 930 of process 900 shown on FIG. 47 elimi-
nates erroneous invisible glyph boundary glyphs.

The DFA may sometimes not be able to detect the bound-
ary between pairs of glyphs because the pixels of the adjacent
pixelcolumns between this glyph pair may be identical. This
only occurs when one of these two glyphs has all of its
pixelcolumns identical to each other. An instance of this case
is shown on FIG. 54.

FIG. 54 shows the Underscore glyph “_" 760, the Right-
Parenthesis “)” 770 and the Underscore glyph “_” 780.
Because the PixelsBetween[_"][*)’]==0, and the GlyphPix-
elWidth[‘_ *]==5, we can see that glyph 760 ends at image
column(9), and therefore glyph 770 must begin at image
column(10). When we look at the MatchedGlyphlL.ist table
333, we see that the DFA has erroneously matched another
Underscore “_” glyph beginning at image column(6). This is
because image columns 5 through 10 include two instances of
the image corresponding to the Underscore “_” glyph.

The way that this problem is corrected is only the first
“every pixelcolumn is identical” glyph is considered to be
valid of a sequence of “invisible glyph boundary” glyphs,
until one of these “every pixelcolumn is identical” glyphs
passes PixelsBetween[| [| validation. This correction is
called StringOfPearls so that we can specifically refer to it.

In preparation for the validation of subprocess 930 we must
collect and store the CodePoint values of every glyph pair that
is known to have this problem. It is only when this subprocess
930 encounters an instance of this glyph pair as adjacent
glyphs within the MatchedGlyphlList, that the StringOfPearls
correction is made.

This preparation involves determining the set of glyphs
within a Fontlnstance that have all of their pixelcolumns
identical to each other, and determining every permutation of
these “every pixelcolumn is identical” glyphs with every
other glyph that results in the invisible glyph boundary. These
“invisible glyph boundary” glyph pairs must be stored. This
preparation would form an additional detail that could be
added to step 340 of process 300 of FIG. 10.

Determining the set of “every pixelcolumn is identical”
glyphs involves generating the set of individual character
glyphs and comparing their GlyphColumn(0) pixelcolumn
pixel RGB values to all of the remaining GlyphColumn pix-
elcolumn pixel RGB values within this same glyph.

Determining the set of invisible glyph boundary glyph
pairs involves generating every permutation of pairs of “every

25

30

35

40

45

50

55

60

65

24

pixelcolumn is identical” glyphs with every other glyph. For
each of these generated glyph pairs we compare the next
pixelcolumn after the “every pixelcolumn is identical” glyph,
and the prior pixelcolumn before this “every pixelcolumn is
identical” glyph, to the GlyphColumn(0) of the “every pixel-
column is identical” glyphs. If either of these two compari-
sons are identical, we store this glyph pair.

PixelsBetween] | [] Validation

Subprocess 940 of process 900 shown on FIG. 47 is used as
the final test to make sure that all glyphs within an Selected-
Nodes:: ImageRow have been correctly recognized. Glyphs
recognized from an input image retain their ImageCol posi-
tions. From these ImageCol positions we can determine the
relative position of recognized glyphs to each other.

Since we collect the number of pixels between every glyph
pair in the PixelsBetween|CP1] [CP2] array, we can validate
that two adjacent glyphs recognized from the input image
have this correct relative position to each other.

The way that this validation works is the actual pixels
between the glyph pair derived from the image horizontal
coordinates stored in an adjacent pair of MatchedGlyph ele-
ments is compared to the expected pixels between stored in
PixelsBetween[CP1] [CP2]. The C++ snippet provided
below shows how actual pixels between and expected pixels
between are derived:

int CP1_Right=MatchedGlyphList[N].right;

int CP2_Left=MatchedGlyphList[N+1].left;

int ActualPixelsBetween=CP2_Left-CP1_Right-1;
int CP1=MatchedGlyphList[N].CodePoint;

int CP2=MatchedGlyphList[N+1].CodePoint;

int ExpectedPixelsBetween=PixelsBetween[CP1]
[CP2];

Whenever the actual pixels between an adjacent pair of
glyphs within the MatchedGlyphList is not the same as the
expected pixels between, PixelsBetween validation fails.
Eliminate Erroneous Vertical Substring Glyphs

Subprocess 950 of process 900 shown on FIG. 47 isused to
eliminate erroneously matched vertical substring glyphs from
the MatchedGlyphList.

All of the post-processing validation is applied to each set
of glyph pixelcolumns that are on the same SelectedNodes::
ImageRow. Since ImageRow specifies the image pixel verti-
cal coordinate of the bottom of the glyph pixelcolumn, its top
vertical coordinate is determined by the following expres-
sion: TopRow=ImageRow-FontPixelHeight+1; This defines
the vertical extent of this glyph pixelcolumn.

Sometimes the vertical extent of one glyph overlaps the
vertical extent of another glyph. This occurs because a tiny
piece of one glyph has the same image bitmap as a portion of
a large glyph. This often occurs with the tiny punctuation
character glyphs of monochrome Fontlnstances.

The way to detect this error is the glyph with the larger
number of foreground pixels is the correct glyph. This
requires keeping track of the number of foreground pixels for
each individual (non-overlapped) character glyph. Determin-
ing and storing this data is an additional step of process 230 of
FIG. 8.

Process 950 would iterate through elements of the
MatchedGlyphList looking for elements that overlap verti-
cally. If it finds overlapping elements it would eliminate the
overlapping element with the fewest foreground pixels of the
overlapping glyph pair.

US 9,171,207 B1

25

Summation of Post Processing Validation

Process 745 of FIG. 45. The above sequence is the cur-
rently recommended order of processing within the preferred
embodiment. As persons skilled in the art will appreciate, the
order of the above validation steps can be changed, steps
combined, and steps eliminated as long as the end result
combines together individual glyph pixelcolumns into cor-
rectly recognized whole glyphs.

To maintain the 100% accuracy of the above specified
validation process, care must be taken to not eliminate any
glyph pixelcolumns or whole glyphs that can not be deter-
mined to be incorrect. The use of stochastic (or probabilistic)
based heuristics must be avoided, the entire process must
remain entirely deterministic.

Unlike other software systems, this system can be verified
with exhaustive testing. Generating every permutation of
three glyphs at the vertical middle of an off-screen memory
bitmap that is three FontPixelHeight units tall, and processing
this entire off-screen bitmap is currently considered to be
sufficiently exhaustive testing. Adjustments are made to the
any of the above steps when this testing reveals errors.

It is important to note that the above-described preferred
embodiments of the DFA recognizer and its many uses are
illustrative only. Although the invention has been described in
conjunction with specific embodiments thereof, those skilled
in the art will appreciate that numerous modifications are
possible without materially departing from the novel teach-
ings and advantages of the subject matter described herein.
Accordingly, such modifications are intended to be included
within the scope of the present invention. Other substitutions,
modifications, changes and omissions may be made in the
design, operating conditions and arrangement of the pre-
ferred and other exemplary embodiments without departing
from the spirit of the present invention.

What is claimed is:

1. A method for creating a system for recognizing machine
generated character glyphs in a graphic image, comprising:

creating a deterministic finite automaton (DFA) for recog-

nizing individual pixel columns of machine generated
character glyphs;

providing a means for combining the recognized indi-

vidual pixel columns together such that whole character
glyphs are correctly recognized wherein the DFA is
created by the following steps:

collecting a set of pixel columns for each character glyph

within a FontInstance;

sorting the collected pixel columns by their pixel RGB

values;

merging identical prefixes of these character glyph pixel

columns together;

generating and storing the DFA from the merged prefixes.

2. The method of claim 1, wherein the DFA is augmented
such that the pixel columns recognized by the DFA are com-
bined together to form correctly matched whole character
glyphs by eliminating the recognized pixel columns that do
not correctly form whole character glyphs.

3. The method of claim 2, wherein the DFA is augmented
such that the whole character glyphs are validated against
each other to eliminate erroneously matched glyphs.

4. The method of claim 1, wherein the DFA is used for the
purpose of exchanging data between application programs.

5. A Method for recognizing machine generated character
glyphs in a graphic image comprising:

creating a deterministic finite automaton (DFA) for recog-

nizing individual pixel columns of machine generated
character glyphs;

5

10

15

20

25

30

35

40

45

50

55

60

65

26

using the DFA to recognize the individual pixel columns of

machine generated character glyphs;

combining the recognized individual pixel columns of

machine generated character glyphs together into cor-
rectly matched whole glyphs.

6. The method of claim 5 wherein the DFA is created by
collecting a set of pixel columns for each character glyph
within a FontInstance and sorting the collected pixel columns
by their pixel RGB values.

7. The method of claim 6 wherein identical prefixes of
these character glyph pixel columns are merged together.

8. The method of claim 7 wherein the DFA is generated
from these merged prefixes and stored.

9. The method of claim 6 wherein every overlapping glyph
pixel column is collected.

10. The method of claim 8 wherein the DFA is represented
as a Sparse Matrix.

11. The method of claim 9 wherein OverlapCodes are
determined for overlapping glyphs.

12. The method of claim 5 wherein the recognized indi-
vidual pixel columns of machine generated character glyphs
are combined together into correctly matched whole glyphs
by eliminating the recognized pixel columns that do not form
whole glyphs.

13. The method of claim 5 wherein the recognized indi-
vidual pixel columns of machine generated character glyphs
are combined together into correctly matched whole glyphs
by eliminating the recognized pixel columns that lack
required corresponding OverlapCodes.

14. The method of claim 5 wherein the recognized indi-
vidual pixel columns of machine generated character glyphs
are combined together into correctly matched whole glyphs
by correcting erroneous glyph order.

15. The method of claim 5 wherein the recognized indi-
vidual pixel columns of machine generated character glyphs
are combined together into correctly matched whole glyphs
by eliminating erroneous horizontal substring glyphs.

16. The method of claim 5 wherein the recognized indi-
vidual pixel columns of machine generated character glyphs
are combined together into correctly matched whole glyphs
by eliminating erroneous invisible glyph boundary glyphs.

17. The method of claim 5 wherein the recognized indi-
vidual pixel columns of machine generated character glyphs
are combined together into correctly matched whole glyphs
by eliminating glyphs that do not pass pixelsbetween valida-
tion.

18. The method of claim 5 wherein the recognized indi-
vidual pixel columns of machine generated character glyphs
are combined together into correctly matched whole glyphs
by eliminating erroneous vertical substring glyphs.

19. A Method for recognizing machine generated character
glyphs in a graphic image comprising:

creating a deterministic finite automaton (DFA) for recog-

nizing individual pixel columns of machine generated
character glyphs;

using the DFA to recognize the individual pixel columns of

machine generated character glyphs;

combining the recognized individual pixel columns of

machine generated character glyphs together into cor-
rectly matched whole glyphs wherein the DFA is created
by the following steps:

collecting a set of pixel columns for each character glyph

within a FontInstance;

sorting the collected pixel columns by their pixel RGB

values;

US 9,171,207 B1
27

merging identical prefixes of these character glyph pixel
columns together;

generating and storing the DFA from the merged prefixes.

20. A Method for recognizing machine generated character

glyphs in a graphic image comprising: 5

creating a deterministic finite automaton (DFA) for recog-
nizing individual pixel columns of machine generated
character glyphs;

using the DFA to recognize the individual pixel columns of
machine generated character glyphs; 10

combining the recognized individual pixel columns of
machine generated character glyphs together into cor-
rectly matched whole glyphs;

wherein the recognized individual pixel columns of
machine generated character glyphs are combined 15
together into correctly matched whole glyphs by the
following steps:

eliminating recognized pixel columns that do not form
whole glyphs;

eliminating erroneous horizontal substring glyphs; 20

eliminating glyphs that do not pass pixelsbetween valida-
tion.

